TOWARDS THE COHOMOLOGY OF AUGMENTATION VARIETIES OF

LEGENDRIAN TANGLES

TAO SU

ABSTRACT. Associated to any Legendrian tangle, the augmentation variety (with fixed boundary
conditions), hence its mixed Hodge structure on the compactly supported cohomology, is a Leg-
endrian isotopy invariant up to a normalization. Induced from the ruling decomposition of the
variety, there’s a spectral sequence converging to the MHS. As an application, we show that the
variety is of Hodge-Tate type, and show a vanishing result on the cohomology. We also do some
example computations of MHSs. In the end, we conjecture that the ruling decomposition for the
full augmentation variety of acyclic augmentations is a Whitney stratification, and the geometric
partial order via inclusions of stratum closures admits an explicit combinatorial description. We
verify the conjecture for the cases of trivial and elementary Legendrian tangles.
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2 TAO SU
INTRODUCTION

A powerful modern Legendrian isotopy invariant in the study of Legendrian knots A in the
standard contact three space R? = J'R,, is the Chekanov-Eliashberg differential graded algebra
(C-EDGA) A(A) = AR?, A). The C-E DGAs are special cases of the more general Legendrian
contact homology differential graded algebras (LCH DGA) A(V, A), associated to a Legendrian
submanifold A in a contact manifold V. The algebra A(V, A) is generated by the Reeb chords
of A, whose differential counts certain holomorphic disks in the symplectization R X V, with
boundary on the Lagrangian cylinder R X V and meeting the Reeb chords at some punctures
[E198,EGHO0]. The LCH DGAs A(V, A), up to homotopy equivalence, are Legendrian isotopy
Invariants.

In the case of Legendrian knots A, the DGA A(A) also admits a combinatorial description
[Che02,[ENS02,Ng03]]. More recently, the construction is extended to obtain LCH DGAs ‘A(T)
for any Legendrian tangles 7 in the 1-jet bundle J'U < J'R,, with U < R an open interval
[Siv11,NRS™15,Sul7]. The LCH DGAs A(T|y) satisfy a co-sheaf/van-Kampen property over
open V — U, hence behave like ‘fundamental groups’. The invariance of the DGAs A(T) up to
homotopy equivalence ensures we obtain Legendrian isotopy invariants by studying the Hodge
theory of their ‘representation varieties’ (called augmentation varieties). In particular, the study
of the augmentation varieties is like that of character varieties, for example, as in [HRVOS].
In the case of Legendrian tangles 7', the natural objects to consider are augmentation varieties
with fixed boundary conditions Aug, (T, ., pr; k) [Sul7|]. In particular, their point-counting
over finite fields, or equivalently by [HRVOS| Katz’s appendix], weight polynomials, recover
the ruling polynomials < p;|R7(z)|og >. The latter are invariants defined combinatorially via
the decomposition of the front diagrams of T, and satisfy a composition axiom, reflecting the
sheaf property of augmentation varieties induced from the co-sheaf property of the LCH DGAs
A(T). Moreover, the sheaf property allows one to derive a decomposition (the ruling/Henry-
Rutherford decomposition) of the augmentation varieties [Sul7|] (see also [HR15] for the case of
Legendrian knots): Aug, (T, pr,pr; k) = upeNRr;(pL,pR)Augg(T; k), where each piece Aug/, (T; k)
is of the simple form (k*)*® x kb®,

Organization and results. In this article, we pursue a study of the mixed Hodge structure on
the (compactly supported) cohomology of the augmentation varieties Aug, (7, pr, pg; C). The
organization and results of this article are as follows: In Section[I] we review some necessary
background on Legendrian knot theory; In Section [3| via a tangle approach, we establish the
‘invariance’ of augmentation varieties with fixed boundary conditions X = Aug, (T, pL, pr; C)
(Theorem [3.10)), in particular, their mixed Hodge structures (Corollary [3.T1). In Section[2.1] we
use the ruling decomposition (Theorem[1.29) in [Sul7] to derive a spectral sequence converging
to the mixed Hodge structure on X (Lemma[2.4). In Section we use the spectral sequence
to show that the augmentation variety X is of Hodge-Tate type (Proposition[2.8), and H;(X) = 0
if * < C where C = a(p) + 2b(p) is a constant depending only 7" and the boundary conditions
(oL, pr) (Proposition 2.9). We also point out the ‘invariance’ of the mixed Hodge structure
associated to st page of the spectral sequence by forgetting the differential (Lemma [2.10).
In Section [2.3] we compute some examples of mixed Hodge structures of the augmentation
varieties Aug,,(T,pr,pr; C). Finally, in Section 4, we study the combinatorics of the ruling
decomposition associated to the augmentation varieties Aug, (7, pr, pr; C). We conjecture that,
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the ruling decomposition for the full augmentation variety Aug), (T'; k) of acyclic augmentations
is a Whitney stratification, and its geometric partial order via inclusions of stratum closures
admits an explicit combinatorial description (Conjecture [d.17). We verify the conjecture in the
cases of the ‘building blocks’ of Legendrian tangles: the trivial and elementary Legendrian
tangles in Section {.1] (Corollary {.6) and Section[4.2](Lemma [4.15).

Acknowledgements. First of all, I would like to express my deep gratitude to my advisor
Vivek Shende for numerous invaluable discussions and suggestions throughout this project.
Moreover, I want to thank Prof. David Nadler for kindly answering my questions concerning
Whitney stratifications, to thank Professors Lenhard Ng, Richard E.Borcherds and Constantin
Teleman for useful conversations and comments. Finally, I’'m also grateful to the 2017 confer-
ence “Hodge theory, Moduli, and Representation theory” at Stony Brook, where some ideas of
this article were started.

1. BACKGROUND
1.1. Legendrian tangles.

1.1.1. Basic definitions. Let U = (x, xg) be an open interval in R, for —co < x; < xz < oo,
consider the standard contact 3-manifold J'U = T*U xR, C J'R, = R}, ., with contact form
a = dz — ydx. The Reeb vector field of « is then R, = d,. As in [Sul7|], we consider (one-
dimensional) Legendrian submanifolds (termed as Legendrian tangles) T in J'U, which are
closed in J'U and transverse to the boundary 0J 'U. In the special case when x; = —o0, xg = 0o,
then U = R, and Legendrian tangles are Legendrian knots/links in Ri,y,z in the usual sense.
The front and Lagrangian projections of T are n,,(T) and r,,(T') respectively, with the obvious
projections 7, : J'U > U xR, and 7, : J'U - T*U = U X R,.

We say 2 Legendrian tangles in J'U are Legendrian isotopic if there’s an isotopy between
them along Legendrian tangles in J'U. Note that during the Legendrian isotopy, we require the
ordering via z-coordinates of the left (resp. right) endpoints is preserved. That is, for two (say,
left) end-points py, p», they necessarily have the common x-coordinate x;, take any path y in

AJ'(U) from p, to p;, then we say p; > p, if z(p1) — 2(p2) = ﬁya/ > 0.

1.1.2. Front diagrams. We will always assume the Legendrian tangle 7 C J'U is in a generic
position inside its Legendrian isotopy class. So, the front projection x,.(T) gives a (tangle)
front diagram, 1.e. an immersion of a finite union of circles and intervals into U X R, away
from finitely many points (cusps), which is also an embedding away from finitely many points
(cusps and transversal crossings), such that it has no vertical tangents, sends the boundaries of
the intervals to the boundary U xR, and is transverse to the boundary. The significance of front
diagrams is that, any Legendrian tangle is uniquely determined by its front projectiorﬂ with the
y-coordinate recovered from the x and z-coordinate, via the Legendrian condition dz — ydx =
0 = y = dz/dx. Note also that, near each crossing of a front diagram, the strand of the lesser
slope is always the over-strand.

"From now on, we will make no distinction between Legendrian tangles and their front diagrams.



4 TAO SU

Given a front diagram r,.(T) in J' U , the strands of r,.(T) are the maximally immersed con-
nected submanifolds, the arcs of n,,(T) are the maximally embedded connected submanifolds
and the regions are the maximal connected components of the complement of 7.,(T) in U X R,.

We say a front diagram in U XR, is plat if the crossings have distinct x-coordinates, all the left
cusps have the same x-coordinate, wihch is different from those of the crossings and right cusps,
and likewise for the right cusps. We say a front diagram is nearly plat, if it’s a perturbation of a
plat front diagram, so that the crossings and cusps all have distinct x-coordinates. We can always
make the front diagram r,.(T) (nearly) plat by smooth isotopies and Legendrian Reidemeister
IT moves (see FIGURE(1.2).

1.1.3. Resolution construction. Given any front diagram r,(T) in U X R_, there’s a simple
way to obtain the Lagrangian projection r,,(T”) of a Legendrian tangle 7", which is Legendrian
isotopic to 7. This is realized by the resolution construction [Ng03, Prop.2.2], via a resolution
procedure as in FIGURE We say that 77 = Res(T) is obtained from T by resolution
construction.

> <= =0

Ficure 1.1. Resolving a front into the Lagrangian projection of a Legendrian
isotopic link/tangle.

1.1.4. Legendrian Reidemeister moves. As in smooth knot theory, there’re analogues of Reide-
meister moves for Legendrian tangles via front diagrams. That is, 2 front diagrams in U X R,
represent Legendrian isotopic tangles in J'U if and only if they differ by a finite sequence of
smooth isotopies and the following 3 types of Legendrian Reidemeister moves ( [Swi92])):

e U - =l T %L%

Ficure 1.2. The 3 types of Legendrian Reidemeister moves relating Legendrian-
isotopic fronts. Reflections of these moves along the coordinate axes are also
allowed.

1.1.5. Maslov potentials. Given a Legendrian tangle T with front diagram n,,(T). Let r =
|r(T")| be the ged of the rotation numbers of the closed connected components of 7 and m be a
nonnegative integer. A Z/mzZ-valued Maslov potential of n,,(T) is a map

w : {strands of 7 (T)} — Z/mZ

such that near any cusp, have p(upper strand) = u(lower strand) + 1. Such a Maslov potential
exists if and only if 2r is a multiple of m. We will always fix a Z/2r-valued Maslov potential
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u for T, in this case T is naturally orientecﬂ by the condition that, for each strand of 7', it’s
right-moving (resp. left-moving) if and only if u takes even (resp. odd) value on the strand.

1.2. Normal rulings and ruling polynomials. Here we review the normal rulings and ruling
polynomials for Legendrian tangles, following [Sul7]. Given a Legendrian tangle 7', with Z/2r-
valued Maslov potential u for some fixed r > 0. Fix a nonnegative integer m dividing 2r.

Assume that the numbers n;, ng of the left endpoints and right endpoints of 7" are both even. For
example, any Legendrian tangle obtained from cutting a Legendrian link front along 2 vertical
lines, satisfies this assumption.

Recall that the front diagram 7,,(T) is divided into arcs, crossings and cusps. For example,
an arc begins at a cusp, a crossing or an end-point, going from left to right, and ends at another
cusp, crossing or end-point, meeting no cusp or crossing in-between. Given a crossing a of the
front T, its degree is given by |a| := u(over-strand) — u(under-strand).

Definition 1.1. We say an embedded (closed) disk of U x R., is an eye of the front T, if it is
the union of (the closures of) some regions (See Section [I.1.2)), such that the boundary of the
disk in U X R_, being the union of arcs, crossings and cusps, consists of 2 paths, starting at the
same left cusp or a pair of left end-points, going from left to right through arcs and crossings,
meeting no cusps in-between, and ending at the same right cusp or a pair of right end-points.

Definition 1.2. A m-graded normal ruling p of (T, u) is a partition of the set of arcs of the front
T into the boundaries in U X R, of eyes (say ey, ..., e,), or in other words,

Ll arcs of T = LI'_, (Je; \ {crossings, cusps}) N U X R,
and such that the following conditions are satisfied:

(1). If some eye e; starts at a pair of left end-points (resp. ends at a pair of right end-points),
we require p(upper-end-point) = u(lower-end-point) + 1(modm).

(2). Call a crossing a a switch, if it’s contained in the boundary of some eye ¢;. In this case,
we require |a| = O(modm).

(3). Each switch a is clearly contained in exactly 2 eyes, say e;, e;. We require the relative
positions of e;, e; near a to be in one of the 3 situations in Figure I.3{top row).

Definition 1.3. Given a Legendrian tangle (7', i), let p be a m-graded normal ruling of (7, u),
and let a be a crossing. Then, a is called a refurn if the behavior of p at a is as in Figure
[[.3(bottom row). a is called a departure if the behavior of p at a looks like one of the three
pictures obtained by reflecting each of (R1) — (R3) in Figure [I.3|bottom row) with respect to a
vertical axis. Moreover, returns (resp. departures) of degree O modulo m are called m-graded
returns (resp. m-graded departures) of p.

Define s(p) (resp. d(p)) to be the number of switches (resp. m-graded departures) of p.
Define r(p) to be the number of m-graded returns of p if m # 1, and the number of m-graded
returns and right cusps if m = 1.

Definition 1.4. Given a m-graded normal ruling p of a Legendrian tangle (7', ), denote by
ei,...,e, the eyes in J'(U) defined by p. The filling surface S, of p is the the disjoint union

2Throughout the context, Legendrian tangles will be assumed to be oriented.
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Ficure 1.3. Top row: The behavior (of the 2 eyes e;, e;) of a m-graded normal
ruling p at a switch (where e; and e, are the dashed and shadowed regions respec-
tively), where the crossings are required to have degree O (modm). Bottom row:
The behavior (of the 2 eyes e;, e;) of p at a return. Three more figures omitted:
The 3 types of departures obtained by reflecting each of (R1)-(R3) with respect
to a vertical axis.

LI e; of the eyes, glued along the switches via half-twisted strips. This is a compact surface
possibly with boundary. See FIGURE(I.4]for an example.

Ficure 1.4. Left: a Legendrian tangle front 7 with 3 crossings ai, a», as, the
numbers indicate the values of the Maslov potential u on each of the 4 strands.
Right: the filling surface for a normal ruling of 7' by gluing the 2 eyes along the
3 switches via half-twisted strips.

Let T, (resp. Tg) be the left (resp. right) pieces T near the left (resp. right) boundary. It’s
clear that any m-graded normal ruling p of T restricts to a m-graded normal ruling of the left
piece T, (resp. of the right piece Tx), denoted by r.(p) or plr, (resp. rr(p) or plr,).

Definition 1.5. Fix a m-graded normal ruling p; (resp. pg) of T (resp. Tr). We define a Laurent
polynomial < pR} (2)lor >=< pLIR}(2)|og > in Z[z,z™'] by
(1.2.1) < prIRE@)lpr >1= > 7K

p:rL(p) = pL.rr(P) = PR

where the sum is over all m-graded normal rulings p such that r; (o) = p., rr(p) = pr- x(p) is
called the Euler characteristic of p and defined by

(1.2.2) X(0) = x(Sp) = X(S pli=xe)-
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where xj is the right endpoint of the open interval U = (xz, xg) and x(S,) (resp. x(S pli=x;)) 18
the usual Euler characteristic of S, (resp. S,li=x,). Equivalently, x(0) = x¢(S plx, <x<x) 15 the
Euler characteristic with compact support of S |, <x<x,. Also, notice that when xz = o0, S |-y,
is empty with vanishing Euler characteristic.

We will call < p;|R7(z)lpr > the m-graded ruling polynomial of T with boundary conditions
(oLs PR)-

Remark 1.6. Given a m-graded normal ruling p, with n; = 2n; (resp. ng = 2nj) left (resp.
right) end-points and ¢;, (resp. cg) left (resp. right) cusps, then § |-, is the disjoint union of nj

closed line segments and n = nj +c; = nj+cp is the number of eyes in p. Hence, x(S yli=x;) = 1
is independent of p and we get a simple computation formula

(1.2.3) Xx(p) = cr = s(p)
where s(p) is defined in Definition In particular, when 7 is a Legendrian link, the definition
here coincides with the usual definition [HR15] of ruling polynomials for Legendrian links.

Given a Legendrian tangle 7', let’s denote by NR7 (resp. NR7(o.,pr)) the set of m-graded
normal rulings of T (resp. those with boundary conditions (o, pg)). Then we have

Lemma 1.7. [Sul7, Lem.2.9] Given a Legendrian isotopy h between 2 Legendrian tangles
T, T’, preserving the Maslov potentials u, (', there’s a canonical bijection between the set of
m-graded normal rulings of T and T’

¢n : NRZ = NR”,

commuting with the restrictions ry, rg, and such that for any m-graded normal ruling p, S , and
(S ,) are homeomorphic, relative to the boundary pieces at x = x; and x = xp.

Note that for such 2 Legendrian isotopic tangles (7, u), (T, i’), their left and right pieces are
necessarily identical: T, = T}, Tg = T,
As a consequence of Lemmal(l.7] we have

Theorem 1.8. [\Sul7, Thm.2.10] The m-graded ruling polynomials < p;|R7(2)|or > are Legen-
drian isotopy invariants for (T, u).

Moreover, suppose T = T, o T, is the composition of two Legendrian tangles T, T», that is,
(T)r =(T2)Land T =T, Yy, T, then the composition axiom for ruling polynomials holds:

(1.2.4) < PR} @lor >= ) < pulRY, @lpor >< piIRY, Dl >

PI
where p; runs over all the m-graded normal rulings of (T1)gr = (T>);.

1.3. LCH DGAs for Legendrian tangles. Here we recall the Legendrian Contact Homology
differential graded algebras (LCH DGAs) associated to any Legendrian tangles. We will follow
closely the definitions in [Sul7], see also [Siv11,[NRS*15]. In the case of Legendrian knots,
the LCH DGAs are naturally defined via the Lagrangian projection, which also admit a front
projection description via the resolution construction [Ng03]. The LCH DGAs for Legendrian
tangles are natural generalizations of those for Legendrian knots, using the front projection
description.
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1.3.1. LCH DGAs via Legendrian tangle fronts. Let (T,u) be any Legendrian tangle (front),
equipped with a Z/2r-valued Maslov potential u. Let #,, ..., *p be the base points placed on T
so that each connected component containing a right cusp has at least one base point. Suppose
T has ny (resp. ng) left (resp. right) endpoints, labeled from top to bottom by 1,2, ...,n, (resp.
1,2,...,ng). Let{ay,...,ar} be the set of crossings and right cusps of 7', let {g;;, 1 <i < j < ng}
be the set of pairs of left endpoints of 7.

Definition/Proposition 1.9. There’s a Z/2r-graded LCH DGA A(T) = (A(T, u, *1,...,*p),0)
with deg(d) = —1 as follows:

As an algebra: A(T) = Z[tF',....65']1 < a;, 1 <i<R,a;,1 <i< j<ng>isafree associative
algebra over Z[rF', ..., r5'], where 1; is the generator corresponding to the i-th base point #;, for
1<i<B

The grading: |tii1| = 0, |a;| = p(over-strand) — u(under-strand) if a; is a crossing, |a;| = 1 if q; is
aright cusp, and |a;;| = pu(i) — u(j) — 1.

The differential: We impose the graded Leibniz Rule d(x - y) = (8x) - y + (=1)¥x - dy. It then
suffices to define the differentials of the generators. These are defined as follows: 8(tf1):0; The
differential of a;;’s are given by

(1.3.1) daij = Y (1" ayay;.
i<k<j
To define the differential of a crossing or a right cusp. Let a = 4; and vy,...,v, be some
elements in the generators {a;,1 < i < R,a;;,1 < i < j < ny} of T for some n > 0. Let
D? = D*> - {p,qi,...,q,} be a fixed oriented disk with n + 1 boundary punctures (or vertices)
P>q1,--->qn, arranged in a counterclockwise order.

Definition 1.10. Define the moduli space A(a;vy,...,v,) to be the space of admissible disks u
of the tangle front T up to re-parametrization, that is,

() (Immersion with singularities) The map u : (D?,0D?) — (Rfa, T) is an immersion,

orientation-preserving, and smooth away from possible singularities at left and right
cusps, near which the image of the map are indicated as in FIGURE[I.5]a,b. Note that
the singularities are not vertices of D?;

(1) (Initialjpositive vertex) u extends continuously to p, with u(p) = a, near which the image
of the map is indicated as in Figure|l.5|c;

(i11) (Negative vertices at a crossing) If v; is a crossing, u extends continuously to g;, with
u(g;) = v;, near which the image of the map is indicated as in Figure[I.5]d;

(iv) (Negative vertices at a right cusp) If v; is a right cusp, u extends continuously to g;, with
u(q;) = v;, near which the image of the map is indicated as in Figure [[.5]e;

(V) (Negative vertices at a pair of left end-points) If v; is a pair of left end-points aj, we
require that, as one approaches ¢; in D?, u limits to the line segment [}, k] at the left
boundary between the left end-points j, k of T';

(vi) The x-coordinate on the image u(D?) has a unique local maximum at a.

Note: the last condition is in fact a consequence of the previous ones In the case
when T is a Legendrian knot (front), all the defining conditions are translated from the definition
of the LCH DGA associated to Res(T'), via the Lagrangian projection description. Via the
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a. Allowed singularties b. Forbidden singularities
c. Initial vertices d. Negative vertices at a crossing

> > = X

e. Negative vertices at a right cusp

(counted twice)

D 5 =

Figure 1.5. Admissible disks: The image of the disk D? under an admissible
map near a singularity or a vertex on the boundary dD?. The first row indicates
the possible singularities, the second and third rows indicate the possible ver-
tices. In the first 2 pictures of part e, 2 copies of the same strand (the heavy
lines) are drawn for clarity.

resolution construction (Figure [I.I)), the defining conditions near a right cusp are illustrated by

Figure[1.6

(counted twice)

Ficure 1.6. The singularity and negative vertices at a right cusp after resolution:
The first figure corresponds to a singularity (Figure [I.5]a), the remaining ones
correspond to a negative vertex (FIGURE @e, going from left to right).

For each u € A(a;vy,...,v,), walk along u(dD?) starting from a in counterclockwise di-
rection, we encounter a sequence sy, ..., sy(N > n) of negative vertices of u (crossings, right
cusps, or pairs of left end-points as in Definition[I.10)) and base points (away from the previous
negative vertices).
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Definition 1.11. The weight of u is w(u) := w(s;) ... w(sy), where

(1) w(sy) = ti(resp. ti‘l) if 5; is the base point #;, and the boundary orientation of u(4D?)
agrees (resp. disagrees) with the orientation of 7 near ;. Note that this includes the
case when the base point *; is located at a right cusp, which is also a singularity of u
(See Figure[I.5]a);

(i) w(sy) = v; (resp. (=D)M*1y) if s, is the crossing v; and the disk u(D?) occupies the top
(resp. bottom) quadrant of v; (See Figure [I.5]d);

(i) w(sk) = a;; if s¢ is the pair of left end-points a;;;

(iv) w(sp) = wi(swa(sy) if sy is the right cusp v; = u(g;) (see Figure [I.5]e), where
wo(sx) = v; (resp. vf) if the image of u near g; looks like the first two diagrams (resp.
the third diagram) of Figure[I.5]e;
wi(sk) = 1 if s¢ 1s a unmarked right cusp (equipped with no base point);
wi(sg) = t; (resp. tJTI) if v; 1s a marked right cusp equipped with the base point *;, and v;
is an up (resp. down) right cuslﬂ See Figure [1.6|for an illustration.

[+1

Definition 1.12. For a = a; a crossing or a right cusp, its differential is given by

(1.3.2) da = Z Z w(u)

V1 seesV UEA(A;V L 5.0, V)

where for a = g; a right cusp, we also include the contribution from an “invisible” disk # coming
from the resolution construction (see Figure (right)), with w(u) = 1 (resp. t]‘.‘ or t;), if there’s
no base point (resp. a base point *;, depending on whether g; is an up or down right cusp).

1.3.2. The co-sheaf property. Let T be a Legendrian tangle in J'U. Let V be an open subinter-
val of U such that, the boundary (9U) x R, is disjoint from the crossings, cusps and base points
of T. T|y then gives a Legendrian tangle in J'V with Maslov potential induced from that of T,
hence the LCH DGA A(T|y) is defined. There’s indeed a co-restriction map of DGAs.

Definition/Proposition 1.13 ( [NRS* 15, Prop.6.12], [Siv11] or [Sul7, Def/Prop.3.9]). The fol-
lowing defines a morphism of Z/2r-graded DGAs tyy : A(T|y) — A(T):

(1) tyy sends a generator of A(T|y), corresponding to a crossing, a right cusp or a base
point of 7', to the corresponding generator of A(T);

(2) For a generator b;; in A(T|y) corresponding to the pair of left end-points i, j of T'|y, the
image tyy(b;;) is defined as follows:
Use the notations in Definition @ and consider the moduli space A(b;j; vy, ..., V,) of
disks u : (D2,0D%) — (R%,T) satisfying the conditions in definition with the
condition for a there replaced by “u limits to the line segments [i, j] between the pair of
left end-points i, j of T'|y at the puncture p € AD? and u attains its local maxima exactly
along [i, j]”. Then define

(13.3) wilby) = ) W)

Vseens Vn MEA(bijsVl ----- Vi)

3Recall that a cusp is called up (resp. down) if the orientation of the front T near the cusp goes up (resp. down).

See Figure
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Example 1.14 (co-restriction ¢ for a right cusp). One key example for the co-restriction of
DGAs is g : A(Tg) — A(T), where T be an elementary Legendrian tangle of a single (marked
or unmarked) right cusp a, and T is the right piece of 7. For simplicity, assume 7 has 4 left
endpoints and 2 right endpoints as in Figure Then A(Tg) = Z < by, >, where by, is the
generator corresponding to the pair of left endpoints of Tg, and A(T) = Z[1,t7'] < a,a;;,1 <
i < j<4>with da = t°“ + ay; (see Definition below), where a;;’s correspond to the
pairs of left endpoints of T, ¢ is the generator corresponding to the base point if the right cusp
is marked and ¢ = 1 otherwise. Then g : A(Tg) — A(T) is given by

wbn) = au+ait " ay + apat " @axy + aist " aaz, + apat " “aas,

= ay +t7ay; + apa)(ay + aasy).

1 1 1 1
> | > |
N : — :
4 2 4+ 2

Ficure 1.7. Left: An elementary Legendrian tangle of an unmarked right cusp.
Right: An elementary Legendrian tangle of a marked right cusp.
Here, we introduce a sign at a right cusp:

Definition 1.15. Given a right cusp a of the oriented tangle front 7', we define the sign o = o(a)
of atobe 1 (resp. —1) if @ is a down (resp. up) cusp. See Figure[1.§]

s —u

o(a) =1 o(a) = —1

Ficure 1.8. Left: a down right cusp. Right: an up right cusp.

One key property of LCH DGAs for Legendrian tangles is the co-sheaf property:

Proposition 1.16 ( [NRS™15, Thm.6.13] or [Sul7, Prop.3.13]). If U = L Uy R is the union of 2
open intervals L, R with non-empty intersection V, then the diagram of co-restriction maps

(1.3.4) ATly) > A(T|)

LLVi \LLUR

AT) = AT)
gives a pushout square of Z/2r-graded DGAs.
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1.4. Augmentations and the ruling decomposition. In this subsection, we will review the
augmentation varieties (with given boundary conditions) for Legendrian tangles, following
[Sul7, Section.4.1].

Fix a Legendrian tangle 7, with Z/2r-valued Maslov potential u, base points ,...,%p SO
that each connected component containing a right cusp has at least one base point. Denote the
crossings, right cusps and pairs of left end-points by R = {a,...,ay}. As always, the base
points are assumed to be away from the crossings and left cusps of T'. Let n;, ng be the numbers
of left and right end-points in 7" respectively.

1.4.1. Full augmentation varieties. We define the LCH DGA (A(T), 0) as in the previous Sec-
tion So as an associative algebra we have A := AT) = Z[tF, ..., t5'1 < ay,...,ay >. Fix
a nonnegative integer m dividing r and a base field k.

Definition 1.17. A m-graded (or Z/m-graded) k-augmentation of A is an unital algebraic map
€: (A 0J) — (k,0) such that € o 9 = 0, and for all a in A we have e€(a) = 0 if |a| # 0(modm).
Here (k,0) is viewed as a DGA concentrated on degree 0 with zero differential. Morally, “e is a
Z|mZ-graded DGA map”.

Definition 1.18. Define Aug, (T, k) to be the set of m-graded k-augmentations of A(T). This
defines an affine subvariety of (k)% x k¥, via the map
Aug, (T, k) > € — (e(ty, ..., €etp), €(@a),...,elay))) € (K) x k"

with the defining polynomial equations € o d(a;) = 0,1 < i < N and €(a;) = O for |a;| #
O(modm). This affine variety Aug, (T, k) will be called the (full) m-graded augmentation variety
Of (T9M9 *13 AR *B)'

Augmentation varieties for Legendrian tangles satisfy a sheaf property, induced by the co-
sheaf property of LCH DGAs in Section More precisely, we have

Definition/Proposition 1.19 (Sheaf property for augmentation varieties). Let 7" a Legendrian
tangle in J'U.

(1) Let V be an open subinterval of U, then the co-restriction of DGAs ¢yy : A(T|y) —
A(T) induces a restriction ryy = 1}, : Aug, (T;k) — Aug, (T|y; k).

(2) If U = L Uy R is the union of 2 open intervals L, R with non-empty intersection V, then
the diagram of restriction maps

(1.4.1) Aug, (T k) —> Aug, (T|g: k)
rLUi l”VR
Aug, (T|L; k) —= Aug,(Tlv: k)

gives a fiber product of augmentation varieties.

1.4.2. Barannikov normal forms.

Example 1.20 (The augmentation variety for trivial Legendrian tangles). Let T be the trivial
Legendrian tangle of n parallel strands, labeled from top to bottom by 1,2,...,n, equipped a
Z/2r-valued Maslov potential u. The LCH DGA is A(T) = Z < a;j,1 <i < j < n >, with
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the grading |a;;| = u(@) — u(j) — 1 and the differential given by formula (1.3.1). The m-graded
augmentation variety Aug, (T'; k) is

Augm(T;k) = {(E(aij))lskanlE o aa,’j =0, and 6((11']') =0if ICl,’j' * O(modm)}
On the other hand,

Definition 1.21. Associate to the trivial Legendrian tangle (7', i), define a canonical Z/m-graded
filtered k-module C = C(T): C is the free k-module generated by ey, ..., e, corresponding to
the n strands of T with grading |e;| = u(i)(modm). Moreover, C is equipped with a decreasing
filtration F° > F!' > ... > F": FIC = Span{e,1, ..., e,}.

Define B, (T) := Aut(C) to be the automorphism group of the Z/m-graded filtered k-module C.
Denote I = I(T) :={1,2,...,n}.

Now, in the example, given any m-graded augmentation € for A(T), we construct a Z/m-
graded chain complex C(e) = (C,d(e)): The differential d = d(e) is filtration preserving, of
degree —1 given by

<dej,ej>=0fori> jand < de;, e; >= (—1)"(i)e(al~j) fori < j.

Here < de;,e; > denotes the coeflicient of e; in de;. The condition that d is of degree —1 is
equivalent to: < de;, e; >= (=1)*Pe(a;;) = 0 if p@@) — u(j) — 1 = la;;| # O(modm) for all i < .
The condition of the differential d* = 0 is equivalent to: for all i < jhave < d’¢;,e; >= Y, < i <
dej, ey >< dey,e; >=0, i.e. Zi<k<j(—1)”(i)‘”(k)e(aik)e(akj) =e€o0da;j=0.

Thus, we see that the map € — C(¢€) gives an isomorphism between the augmentation variety
Aug, (T; k) and the set MCSA(T; k) of Z/m-graded filtered chain complexes (C, d), or equiv-
alently, the set of filtration preserving degree —1 differentials d of C. From now on, we will
always use this identification (see also Section 3.1).

Given the Legendrian tangle (7', u) of n parallel strands, B,,(T') acts naturally on Aug, (T'; k) =
MCSA(T) via conjugation: given ¢ € B,,(T) and (C,d) in MCSA(T'; k), have ¢-(C,d) := (C,po
d o 7). In particular, the B,,(T)-orbit B,,(T) - (C,d) (or B,,(T) - d) is simply the isomorphism
classes of d.

Lemma 1.22 (Barannikov normal form, [Sul7, Lem.4.5], or [Bar94,Laul5]|). Let (C,d) be
any Z./m-graded filtered chain complex over k, where C = Span,le,...,e,} is fixed with the
decreasing filtration F* > F' > ... D F": F/C = Spani{e;,1,...,e,}, then the isomorphism
class of (C,d) has a unique representative, say (C,dy), such that the matrix (< doe;, e; >); ; has
at most one nonzero entry in each row and column and moreover these are all 1’s. Equivalently,
for I = {1,2,...,n), there’s a partition I = U U L U H and a bijection p : U — L, satisfying
p(i) > iand le;| = eyl + 1(modm) for all i in U, and such that dye; = e, for i € U, dpe; = 0
forie LUH.

The unique representative (C, dy) is called the Barannikov normal form of (C, d).

Definition 1.23. Given a trivial Legendrian tangle (7, u), a partition I = I(T) = U U LU H

together with a bijection p : U — L as in Lemma , will be called an m-graded isomorphism
type of T, denoted by p for simplicity.
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Remark 1.24. By Lemma|[[.22] each m-graded isomorphism type p of T determines an unique
isomorphism class O,,(0; k) of Z/m-graded filtered k-complexes (C(T),d). In other words,
On(p; k) is the B, (T)-orbit of the canonical augmentation €, (equivalently, the Barannikov
normal form d, determined by p), using the identification in Example [.20[ We thus obtain
a decomposition of the full augmentation variety for the trivial Legendrian tangle (7, u):

(1.4.2) Aug, (T; k) = U,0,,(0; k)
where p runs over all m-graded isomorphism types of 7.

In addition, take a m-graded augmentation € of A(T), or equivalently the m-graded filtered
chain complex C(e) = (C,d(e)). Suppose € is acyclic, meaning that (C, d(e)) is acyclic, 1.e.
H = 0 in the partition / = L U H U U associated to d(e). Then, the associated m-graded
isomorphism type p : U — L can be identified with an m-graded normal ruling (denoted by the
same p) of T'.

1.4.3. Augmentation varieties with fixed boundary conditions. Now, we come back to the gen-
eral case. Let (T, u, #1,...,*p) be any Legendrian tangle as in the beginning of this subsection.
Take the left and right pieces of T, called T, Tk respectively. We get 2 restrictions of augmen-
tation varieties

(1.4.3) rp =1t : Aug, (T) — Aug,(T,)

(1.4.4) rr =ty : Aug, (T) — Aug, (Tg).

By the sheaf property of augmentation varieties, it’s natural to consider the following subvari-
eties:

Definition 1.25. Given m-graded isomorphism types p,, pg for T, Tk respectively, and €, €
O,.(pr; k). Define the varieties

Aug, (T, €., pr; k) := {€L} Xaug, (1,0 XAUE, (T k) Xaug, (Tr:b) XO,(pr; k)

Aug, (T, pr, pr; k) := Ou(pr; k) Xaug, (7,50 XAUE, (T3 k) Xaug (Tx:6) XOm(pr: k)

Aug, (T, €, pr; k) will be called the m-graded augmentation variety with boundary conditions
(er,pr) for T. When €, = ¢,, is the canonical augmentation of T; corresponding to the Baran-
nikov normal form determined by p;, we will call Aug, (T, €,,, pr; k) the m-graded augmenta-
tion variety (with boundary conditions (py, pr)) of T.

By definition, we immediately obtain a decomposition of the full augmentation variety
(1.4.5) Aug, (T k) = Uy, ppAug,, (T, oL, Pr; k)
where p;, pg run over all m-graded isomorphism types of T, Tk respectively.

From now on, we will consider only the varieties Aug, (T, pr, pr; k) (or Aug, (T, €., pr; k)
for some €, € O,,(o.;k)), where p;, pr are m-graded normal rulings of T, Tk respectively. In
particular, this forces that the numbers n;, ng of left endpoints and right endpoints of 7" are both
even.

Definition 1.26. Let F, be any finite field, and p;, pr be m-graded normal rulings of Ty, Tk
respectively. The m-graded augmentation number (with boundary conditions (pr,pr)) of T



TOWARDS THE COHOMOLOGY OF AUGMENTATION VARIETIES OF LEGENDRIAN TANGLES 15

over F, is
(1.4.6) aug, (T, pr, pri q) = g~ Pen 09O | Aug, (T, €, pri Fy)|
where |Aug, (T, €,,, pr; F,)l is simply the counting of F,-points.

Augmentation numbers are invariants computed by ruling polynomials:

Theorem 1.27 ( [Sul7, Thm.4.19]). Let (T, u) be a Legendrian tangle, with B base points so
that each connected component containing a right cusp has at least one base point. Fix m|2r
and m-graded normal rulings py, pg of Tr, Tr respectively, then

_dsB m
aug, (T, pr,pr;q) = ¢ 2 2° < prIRY(2)lor >

where q = |F,|, z = q% - q‘%, and d is the maximal degree in z of < pr|R7(2)lpg >.

In other words, the point-counting, or equivalently by [HRVO0S8, Katz’s appendix], the weight
polynomials of the augmentation varieties Aug,, (7, €,,, pr; k), recover the ruling polynomials.

1.4.4. The ruling decomposition. Given a Legendrian tangle (7, u). Assume T is placed with
B base points so that each right cusp is marked. Label the crossings, cusps and base points
away from the right cusps of T by ¢;,..., g, with x-coordinates, from left to right. Let xy, <
x; < ... < Xx, be the x-coordinates which cut T into elementary tangles. That is, x, and x,
are the the x-coordinates of the left and right end-points of 7', and x,_; < x, < x; for all
1 <i<n LetT; = T|yy<x<x) and E; := Ty, ,<x<x, be the i-th elementary tangle around ¢;, then
T=T,=E 0E,o...0E,isthe composition of n elementary tangles.

Fix m-graded normal rulings p;, pr of T}, T respectively. Fix ¢, € O,,(or; k).

Definition 1.28. For any m-graded normal ruling p of T such that p|;, = p, and plr, = psg,
denote p; := P|7,),=1,.,), for 0 < i < n. In particular, po = pr,p, = pg. Use the left and right
restriction maps for augmentation varieties, to define the varieties

Augh (T, er) = Aug,(Ei,€L,01) X0,01) - - - XOn(onr) AUL(En, Pt Pr)

Aug) (T, pr) = Aug,(E1,po.p1) X0, - - - XOu(on-1) AUL(Ens Pn-1, Pn)
while for simplicity we have ignored the coefficient field k. Sometimes for clarity, we also de-
note Augh (T, €, pr; k) := Augh (T, €.; k) and Augh (T, pr, pr; k) = Augh (T; k) := Augh (T, pr; k).

We then have the ruling decomposition:

Theorem 1.29 ( [Sul7, Thm.5.10] or [HR15, Thm.3.4]). Let (T, i) be any Legendrian tangle,
with B base points placed on T so that each right cusp is marked. Fix m-graded normal rulings
o, pr of Ty, Ty respectively. Fix €, € O,,(or; k). Then there’s a decomposition of augmentation
varieties into the disjoint union of subvarieties

Aug, (T, €, pr; k) = L,Augh (T, €1, pr; k)

Aug, (T, pr, pr; k) = UpyAug), (T, pr, pr; k)
where p runs over all m-graded normal rulings of T such that plr, = pr, plr, = pr. Moreover,
(1.4.7) Aug) (T, €1, pr: k)
(1.4.8) Augh (T, pr, pr; k)

IR

(k*)—x(p)+3 % kr(p)
On(pr; k) X (k) XOE 5 )

IR
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~ (k*)_X(f’)+B+"’L X kr(p)+A(pL)
where ny, = 2n, is the number of left endpoints of T, and A(py) is defined below.

Definition 1.30. As in Definition [I.23] let p be any m-graded isomorphism type for a trivial
Legendrian tangle T: I = I(T) = U UL UH,p : U — L. For any i € I, define

1) == {j € 1|j > i, u(j) = p()(modm)}.
For any i € U U H, define
A(i) = Ap(i) :={j € UL H|j € I1(i) and p(j) < p(D)}.
where for i € H, denote p(i) := co. Now, define A(p) € N by

Ap) = D IAGI+ ) G

ieULUH i€l
From now on, we will always assume that each right cusp of a Legendrian tangle is marked.

Remark 1.31. By [Sul7, Lem.4.20], the index —x(p) + 2r(p) only depends on T, plr,, plr-
Hence, so is a(p) + 2b(p), where a(p) = —x(p) + B + n},b(p) = r(p) + A(pr).

Remark 1.32. By the previous theorem, we obtain a natural surjection
Ry : Aug, (T, pr, pr: k) = NR7 (0. pr)

which sends an augmentation to its underlying m-graded normal ruling.

2. ON THE COHOMOLOGY OF THE AUGMENTATION VARIETIES

Let (T,u) be an oriented Legendrian tangle. Given any augmentation variety with fixed
boundary conditions associated to (7, u), the mixed Hodge structure on its compactly sup-
ported cohomology, up to a normalization, is a Legendrian isotopy invariant (Section [3). In
this section, associated to the ruling decomposition of the variety, we derive a spectral sequence
converging to the mixed Hodge structure. As an application, we obtain some knowledge on the
cohomology of the augmentation variety.

2.1. A spectral sequence converging to the mixed Hodge structure. As in Section let
(T, ) be an oriented Legendrian tangle with each right cusp marked, and T = E; o E, 0 ... E,
is the composition of n elementary Legendrian tangles. Fix m-graded normal rulings p;, pg of
Ty, Tg respectively. Denote by NRY (o, pr) the set of m-graded normal rulings p of 7' such that
plr, = pL,plry = Pr-

Foreach 1 <i < n—1, recall that the co-restriction of LCH DGAs induce a restriction map of
augmentation varieties r; : Aug, (T, pL, pr; k) — Aug, ((E)g = (Eix1)1; k), where Aug), (E))g =
(Eis1)1; k) is the variety of acyclic augmentations (See Remark [1.24)) of (E;)z = (Ei1+1).. Take
the underlying normal rulings, r; induces the restriction map on the sets of normal rulings
ri + NR7 (oL, pri k) — NR{, . given by ri(p) = pl,,. Moreover, the ruling decomposition
Augl (EDr; k) = U:Aug, ((E)r; k) = O,(t;k) is a stratification stratified by the B,,((E)r)-
orbits, where 7 runs over the set NRZE,-)R of all m-graded normal rulings of (E))g.
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Definition 2.1. Firstly, define a geometric partial order <6 on NR{%,, via inclusions of strata:
For any 7,7" in NR{}, , we say 7 <9 7, if O,,(t'; k) C O,u(7: k) in Augy, ((E)g; k).
Now, define an algebraic partial order <* on NR7(p;, pr): For any p, p’ in NR} (0, pr), we say
o <A p,if ri(p’) < ri(p) forall 1 <i<n-—1.
Definition 2.2. For each m-graded normal ruling p of T, define a closed subvariety A,(T; k) of
Aug,, (T, pL, pr; k):

A(T; k) := (€ € Aug, (T, pL, pr; b)IRr(€) <" p)

Notice that A,(T;k) = N'=!r7'(0,(ri(p); k), so it’s indeed a closed subvariety. It’s also clear

i=1"1i

that A,(T; k) = UprsApAugﬁ; (T'; k) set-theoretically.

The ruling decomposition induces a finite ruling filtration of Aug, (T, p.,pr;k) by closed
subvarieties:

Definition/Proposition 2.3. Define a decomposition NR7 (0., pr) = uiD: oRi by induction: Let
D + 1 be the maximal length of the ascending chains in (NR% (o, pr), <4). Let Rp is the subset
of maximal elements in (NR7 (o1, or), <. Suppose we’ve defined R,,1,...,Rp, let R; be the
subset of maximal elements in (NR7 (o1, or) — P R s <.

=it
Now, define the closed subvariety A; = A,(T, pL,/])R; k) of Aug, (T, pr,pr; k) as
(2.1.1) A; = Uyer AT k)

for 0 < i < D. By definition, we obtain a finite filtration:

(2.1.2) Aug, (T,pr,prsk) =Ap DAp-1D...0A DA =0
Moreover, as varieties we have

(2.1.3) A; = Aimy = Uper Augh (T; k)

That is, A; — A, is the disjoint union of some open subvarieties Aug’, (T’; k).

Proof. 1t suffices to show the last identity. This is clear set-theoretically, it’s enough to show
each Aug’ (T'; k) is an open subvariety of A; — A;_;. We only need to show that, for any p # p’
in R;, have Aug) (T; k) N Augf;;(T; k) = 0. Otherwise, say, € € Augh (T; k) N Augﬁ;(T;k), then
Rr(e) = p, and € € Aug%(T;k) - r;l(O_m(r,-(p’);k)) forall1 < i < n-1. It follows that
ri(€) € O,(rip)); k), hence ri(p) <% ri(p’) forall 1 <i < n -1, thatis, o’ <* p. However, p is

maximal in NR7 (o7, pr) — uf:MRj, so p = p’, contradiction. O

Now, the ruling filtration induces a spectral sequence computing the mixed Hodge structure
(Definition/Proposition of the augmentation variety Ap = Aug, (T, pr, pr; C):

Lemma 2.4. Any finite filtration Ap > Ap_1 O ... D Ay D A_; = 0 by closed subvarieties
induces a spectral sequence converging to the compactly supported cohomology of the variety
Ap, respecting the mixed Hodge structuresﬂ (MHS):

EPT = HIY(A,\ Ap) = HIM(Ap).

4For simplicity, we will only consider mixed Hodge structures over Q, and the cohomology is understood as
that with rational coefficients.
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Proof. This is a well-known fact to experts. However, we give a complete proof here, due to a
lack of good reference. ForeachO < p < D,letU,=A,-A,_;and j, : U, — A, be the open
inclusion. Let i, : A,_; = A, be the closed embedding. We then obtain a short exact sequence
of sheaves on A ,:

(2.1.4) 0 — (j,) j;IQAP -Q, - (ip)*i;IQAp -0
where QA is the constant sheaf on A,. Take the hypercohomology with compact support,
we obtain a long exact sequence in the abelian category of mixed Hodge structures (Defini-
tion/Proposition [2.5)):

. ap . ﬂ; . 61 -
(2.1.5) ...— H(U,) =5 H(A,) = H(A,_)) = H™ (U, - ...

We can now construct an exact couple [McCO1, Section 2.2] from the long exact sequences
associated to the triples (U,,A,,A,-1) as follows: Take

D :=@,,D", D" = H*" (X, ), E := ®,,E", EP := H'*(U,).
Define morphisms of Q-modulesi: D — D, j: D — E,and k : E — D as follows: Let
ilDP""le ::8[7 : D.D+1,q — HfHI(XP) — ppatl — Hf+q(Xp—1);
]'|Dm+1 - (5p : Dp,q+l — H5+q(Xp—l) N Ep,q+1 — Hf+q+1(Up);

Klgran = @, : EP4TN = HPYYY(U ) — DPYYT = gPratl(x ),

It’s easy to check that we have obtained an exact couple C = {D, E, i, j, k} of bi-graded Q-

modules
" D
N
E

such that the bi-degrees of the morphisms are: deg(i) = (-1, 1),deg(j) = (0,0), and deg(k) =
(1,0). Recall that, an exact couple C = {D, E, 1, j, k} is a diagram of bi-graded Q-modules as
above, with i, j, kK Q-module homomorphisms, such that, the diagram is exact at each vertex.
Also, given any exact couple C = {D, E, i, j, k}, the derived couple C' = CV = (D', E’, 7, j', k'}
of C is defined as follows: Take

D’ = i(D) = ker(j),E’ = H(E,d) = Ker(j o k)/Im(j o k), where d = jo k.

and define

D

i =ilypy: D' —> D'

Jj D" — E'by j(i(x)) = j(x) + dE € E',Yx € D;

k' : E' — D' by k'(e + dE) = k(e), Ve € Ker(d).
Notice that C’ is again an exact couple [McCO1, Prop.2.7].

In our case, for each n > 0, let C™ = {D™, E® i jw [my = (C=DY be the n-th derived
couple of C. Then, by [McCO1, Thm.2.8], the exact couple C induces a spectral sequence
{E,.d.},r=1,2,...,where E, = E"V and d, = j* o k™ has bi-degree (r, 1 — r). In particular,
E1 =F= E*’*,dl = ]Ok
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To finish the proof of the lemma, we also need to determine E,, = E, for r >> (0. By
[McCO1, Prop.2.9], have EP? = ZP7/B>, where 2P = k™'(Im(i"!) : Drrra—rt — prrla),
Bl = j(Ker(i"') : D74 — ppr=rla+tr=1y Moreover, EL? = N,Z0/ U, B,

In our case, clearly have ELY = E for r >> 0. Moreover, for r >> 0, we see that i"~!
0: DM = HM A, ) — Drribarr-t = grra-la = @) = 0, and j = 6, : DM =
HY N (A,m) — EP9 = HIY(UY), so B = Im(8, : H' ' (A,_1) — HIM(U,)) = Ker(a, :
H!™(U,) — H™(A,)). On the other hand, for r >> 0, "' = I'; : DP* 47+ = HI™(A,,,, =
Ap) — DP*'4 = HI(A,) is the natural morphism induced by the inclusion I, : A, < Ap, and
k=a,: EM = H!"U,) - D' = HI"(A,). So, ZI'" = a;,'(I; - H™(Ap) — H!™(A))).
Therefore, we have E"! = a;'(Im(I}))/Ker(e,) = Im(I}) N Im(a,) = Im(I}) N Ker(8,), where
the last 2 equalities follow from the following commutative diagram with exact rows, in which
all the squares are fiber products:

Im(Z;) N Im(a,)

7 m -
0 — Ker(e,) — ;' (Im(I3)) Im(I3)
v
Id Im(a/p) c
0 — Ker(@,) — H*(U,) - HMA) 22 BP9, )

Let FPH""(Xp) := Ker(I*_,). Clearly, the identity of inclusions I,_; = I, 0 i, : A, SR
p-1 y y P pOlp P
1 ) . 1 B .
Ap = Apinduces I = it oI5 = B0l : H'"(Xp) — HI'(A,) = HI™(A,-1). So we obtain
a filtration H?"(Xp) = F* > F' o5 ... > FP o> FP*! = 0 for H?"(Xp). Thus, we obtain the
following commutative diagram with exact rows:

! |

0 —= Ker(Iy) — HI*I(Xp) — Im(I}) — 0
J1d v

0 — Ker(l} ) — HI*(Xp) —Im{Z}_)) —0

| }

o FPJFPRL >0

By the five lemma, we then have the natural isomorphism E%? = FP/FP*'(H?"(Xp)). Thus,
the spectral sequence {E}“,d,} converges to H?™(Xp), with the first page given by E/?! =
HI™(U,) = H™(A, \ A,_;). Finally, the compatibility with MHS is automatic, as all the
morphisms in the previous construction, hence in the spectral sequence, are morphisms in the
abelian category of mixed Hodge structures over Q. O
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2.2. Application. The spectral sequence in the previous subsection allows us to draw some
conclusions about the cohomology of the augmentation variety. We begin with some prelimi-
naries on mixed Hodge structures, mainly due to Deligne [Del71,Del74]. A general reference
is [PSO8]. We only review the part which is most relevant to us.

Definition/Proposition 2.5. ( [Del71},Del74]] or [PSOS8])

(1

2)

3)

“4)

Let X be a complex algebraic variety, for each j there exists an increasing weight filtra-
tion
0=W_cWyC...cW;=H/(X)=H!(X,Q)
and a decreasing Hodge filtration
H(X)=H(X,C=F'>F'>..oF">F" =0
such that the filtration F induces a pure Hodge structure of weight / on the complexifi-

cation of the graded pieces Gr;” = W;/W,_; of the weight filtration: for each 0 < p < I,
we have

C C C
Gr)"” = F'Gr)” ® F-r*'Gr)

If X is smooth and projective, then HZ(X) = H/(X,Q) is a pure Hodge structure of
weight j, with the Hodge filtration F'H/(X,C) = @, p=:H"4(X), induced from the
classical Hodge decomposition H/(X, C) = @, H"(X) = H1(X, QF).

For example, if X = P!(C), then H*(X) = Q(-1) is the pure Hodge structure of weight
2 on Q, with the Hodge filtration on H*(X,C) = H"!(X) = C given by F' = C, F? = 0.
Here Q(—1) is called the (—1)-th Tate twist (of the trivial weight O pure Hodge structure
Q). In general, define Q(—m) := (Q(—1))®" to be the (—m)-th Tate twist, that is, a pure
Hodge structure of weight 2m on Q, with Hodge filtration F™ = C, F™*! = 0.

If we replace HI(X, Q) by any finite dimensional vector spaces V over Q, then (1 . ) gives a
mixed Q-Hodge structure (MHS) on V. One standard fact is that, the category of MHSs
form an abelian category [PS08, Cor.2.5].

Given any triple (U, X, Z) of complex varieties, with i : Z < X the closed embedding,
and j : U = X — Z — X the open complement, there exists an induced long exact
sequence in the abelian category of MHSs:

DS HO) D HXDS H@)S Y WU) -

Definition 2.6. For any complex algebraic variety X, define the (compactly supported) mixed
Hodge numbers by

hPI(X) = dlm@GrFGr HI(X)C.

I’+q ¢

Define the (compactly supported) mixed Hodge polynomial of X by

He(X; x,y,1) := )" hPUI0ORyY,
P:4.J

And, the specialization E(X;x,y) := H.(X;x,y,—1) is called the weight polynomial (or E-
polynomial) of X.
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Definition 2.7. We say, an complex algebraic variety X is Hodge-Tate type, if h” ’qi: 0 when-
ever p # g. That is, X is of Hodge-Tate type, if for each j and /, the piece F” N F¢ of Hodge
type (p, g) on the pure Hodge structure GerHZ(X)(C vanishes whenever p # q.

Now, we come back to the study of augmentation varieties:

Proposition 2.8. The MHS on H:(Aug, (T, pL, pr; C)) is of Hodge-Tate type.

Proof. By the previous subsection, the ruling filtration for Ap = Aug, (T, pr,pr; C) induces
a spectral sequence EV™ = H?™(A, \ A,-1) = HY™(Ap), in the abelian category of mixed
Hodge structures over Q. Moreover, A, \ A,_| = U,g,Aug, (T;C), where Augh(T;C) =
Aug’ (T, pr, pr;C) = (C*)™) x C*® by Theorem with a(p) = —x(p) + B + n},b(p) =
r(p) + A(py). Hence, Ej = Hi(A, \ Ap1) = Gper, H (C)®P @ H(C)*¥, is of Hodge-Tate
type (Example 2.12). As each E7,, is a subquotient of E;, it follows that E; for all r > 1, in
particular, E7, = H:(Ap), is also of Hodge-Tate type. O

Also, we have:

Proposition 2.9. H'(Aug, (T, pr,pr;C)) = 0 fori < C, where C = C(T,pr,pr) := (—x(p) + B+

n;)+2(r(p) + A(pr)) (Theorem Remark is a constant depending only on T, py, pgr. In
particular, the cohomology H(Aug, (T, pr, pr; C)) vanishes in the lower-half degrees.

Proof. In the proof of Proposition we observe that H:((C¥)*¥) x C*®) = 0 if = < a(p) +
2b(p) = C (Example 2.12). Hence, EV? = H?™(A, \ A,-1) = 0if p + g < C. It then follows
from the spectral sequence that, EZ*? for all r > 1, in particular, E'? = H”"(Ap), vanishes if
p+q<C. i

In the spectral sequence in Lemma associated to Ap = Aug, (T, pr, pr; C), take the Ist
page E”! = HY™(A,\A,_) and forget the differential d;, the mixed Hodge structure on &,E"? =
®,H"" (A, \ A,_,) gives the first approximation of the mixed Hodge structure on H”(Ap).
Consider the variety Aﬁjgm(T, pL,Pr; k) = U,Augh (T; k) of the disjoint union of the pieces in
the ruling decomposition, which is not identical to Aug, (T, p., pg; k) as varieties. We see that
®,H (A, \A,_y) = HY +q(z%,,l(T, o1, pr; C)). This is a Legendrian isotopy invariant, up to a
normalization:

Lemma 2.10. Given any two Legendrian tangles (T, u),(T’, "), and any (generic) Legendrian
isotopy h between them, there’s an isomorphism

), 2 Aug, (T, pr, pr; k) X (KT 5 kBT = Aug, (7, pr, prs k) x (KT x k4m =50

which induces the natural bijection ¢, in Lemmal[l.7)( [Sul7, Lem.2.9]) on the underlying sets of
m-graded normal rulings. Here B(T), B(T’) is the number of base points on T, T’ respectively,
and dim = dim Aug, (T, pr, pr; k) (resp. dim’ = dim Aug, (T’, pr, pr; k)).

In particular, the mixed Hodge polynomial of g?l?gm(T, oL, Pr; C), up to a normalization, is a
Legendrian isotopy invariant:

H.(C* x,, 0 BDHL(C; x,y, )™ ™ BDH (Aug, (T, pL, pr; C); X, y, 1)
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= Z (t+ qt2)a(p)—B(T)( qt2)b(p)—dim+B(T)
PENRT(oL.pR)

where q = xy.

Proof. By Theorem we have Aug? (T; k)x (k)BT xdim =BI") = (=) ao)+BI") y jeblo)+dim =BT |
and similarly for Aug®®)(T’; k) x (k)BT x k4m=B0) By Lemma it’s already known that
X(@n(p)) = x(p) for all p € NR7 (oL, pr). Hence, a(p) + B(T") = —x(p) + B(T) + n} + B(T") =
a(¢n(p)) + B(T) (see Theorem[1.29). Also, by Remark [I.3T] —x(p) + 2r(p) is independent of p.
It follows that

dim = max,enr(p, o0 f—x (@) + B(T) + ny + r(p) + A(pp)}

= max,| _)‘2(’0)} 4 _)‘2(’0) +1(p) + B(T) + 1, + A(pr)
= max(=Z (q;”(p))} s X (i’“(p)) +r(p) + B(T) +nl, + Alpr)

= dim’ — b(¢u(p)) — B(T") + b(p) + B(T)
That is, b(¢;,(p))+dim—B(T) = b(p)+dim’—B(T"). Therefore, Aug’ (T; k)x (k*)BT) x jdim'=BT") ~
Aug? O (T"; k) x (k*)PT) x k4im-B(D_ This ensures the existence of an isomorphism ®@;,. o

Remark 2.11. Notice that, by Theorem if we instead work with the augmentation vari-
eties Aug, (T, €1, pg; k), all the previous discussions in this section still apply, possibly up to a
different normalization.

2.3. Examples.
Example 2.12. We begin with some preliminary examples.

(1) Take X = C*. For example, take T to be the standard Legendrian unknot with 2 base
points, with one on the right cusp, then X = Aug,(7;C) = C*. Let Y = P!(C), and
j : X = C* < Y be the open inclusion, with the closed complement i : Z = {0, o0} < Y.
From the classical Hodge theory, we know H(Y) = Q[0] ® Q(—1)[-2], where [-] corre-
sponds to the cohomological degree shifting. That is, H(Y) is the pure Hodge structure
Q in cohomology degree 0, Q(—1) in cohomology degree 2, and 0 otherwise. Similarly,
H'(Z) = Q*[0]. Now, by Definition/Proposition [2.5] the triple (X, ¥, Z) induces a long
exact sequence of mixed Hodge structures:
0> HXX) > HX(Y)=Q - H)XZ)=Q
- H(X)->H'(¥)=0-H'(Z)=0
— H;(X) > HX(Y) = Q(-1) » H}(Z) = 0
Together with the knowledge about the cohomology of X, it implies that H:(X) =
Q[-1]1® Q(=1)[-2] as MHSs. Thus, H.(X; x,y,1) = t + xyt*.
(2) Similarly, take X = C. We see that H(X) = Q(=1)[-2]. Thus, H.(X; x,y,1) = xyt*.
(3) Now, take X = (C*)* x CP. The Kiinneth formula implies that H:(X) = H:(C*)®* ®q
H(C)®* = (Q[-11 ® Q(-D[-2D** ® (Q(-=D)[-2D)*". Thus, H.(X;x,y,1) = (¢t +
xyt?)*(xyt?)?. In particular, X is of Hodge-Tate type, and H;(X) vanishes if * < a + 2b.
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Example 2.13. Take (A, i) be the Legendrian right-handed trefoil knot as in Figure with
B(A) = 2 base points placed on the 2 right cusps. Clearly, the rotation number » = 0. As in
the figure, denote the generic vertical lines by x = x;,0 < i < 3. Take the Legendrian tangle
(T, ) := (A, W)l{xo<x<xs)» this is the example in [Sul7, Example.4.25]. So, T = E; o E; 0o Esisa
composition of 3 elementary Legendrian tangles, where E; = Al ,<x<x;) for 1 <i < 3. Denote
T; = Alxy<x<x;) = E10...0E; for 1 <i < 3. Asusual, for each 7, label the strands of T over x = x;
from top to bottom by 1, 2,. .., s;. For simplicity, take m # 1. Recall [Sul7, Example.2.13] that
NR7, = {(o)1 = (12)(34), (pr)> = (13)(24)}, NR7, = {(or)1 = (12)(34), (pr)> = (13)(24)}.
Use the notations in [Sul7/, Example.4.25], recall that

(1) Aug,, (T, €p,),> (Er)13 k) = {(x,)2, € Klx; + x3 + x1x003 # 0} = k* X kLK™ X kU (k).

(2) Aug, (T, €,),, (Pr)2: k) = {(x)2, € a1 + x3 + x10003 = 0} = {(x)7, € K|l + x1xp #
0} = kU (k*)%.

(3) Aug,, (T, €p,), (Pr)13 k) = {(x)), € K1 + xox3 # 0} = k> Lk X (k")

(4) Aug, (T, €,),, (Pr)2: k) = {(x,)7 ;11 + xox3 = 0} = {(x)7, € K*|xo # 0} = k X k*.

where in each case above, the last equality corresponds to the ruling decomposition. Also,
(x1, X2, x3) corresponds to the augmentation € € Aug, (T’; k) defined by e(a;) = x;, and €|, =

€., (TeSp. €p,),) in (1), (2) (resp. (3), (4)).

FiGure 2.1. (A, i) = the Legendrian right-handed trefoil knot with 2 base points
*1, % at the right cusps ¢y, ¢, respectively. ay,a,,as are the crossings, and the
numbers encode the Maslov potential values on each strand. Moreover, define
Legendrian tangles T; := Aljyy<x<x), 1 <i<3,and T = T3.

We want to compute the mixed Hodge polynomial for each case. Define for each Legendrian
tangle 7, the augmentation variety Aug, (T}, €.;k) := {€ € Aug, (T;;k) : €lr;, = €L}. Denote
k := C. For each i, denote the pairs of endpoints of T'|,=,, by afnq, 1 < p<gq<4 Inthe
computation, we will use the following fact frequently: If Y = A"(k) is an affine space, j : U —
Y is an nonempty Zariski open subset, and i : Z = Y — U < Y is the closed complement.
Then H:(Y) = Q(-n)[-2n] as MHSs, and dim;Z < n — 1 = H?*""(Z) = 0 = H>*(Z). Thus, by
Definition/Proposition [2.5] the triple (U, Y, Z) induces exact sequences of MHSs:

(2.3.1) 0=H(Y)— H(Z) - H"(U) - H"'(Y)=0,i + 1 <2n;
0=H""YZ) - H"(U) > H*(Y) = Q(-n) = H*(Z) = 0.
(a). Firstly, consider the case (2). Note: Aug, (T, €p,),, (Pr)2; k) = Aug, (T5, €,,),, (12)(34); k),

where (12)(34) is the m-graded normal ruling of (T)g. Clearly, Aug, (7>, €,,),; k) = {(x; 1.2:1 €
k*} = k*. Notice that 1 + x;x, = e(a?,) for any € € Aug, (T, €p,),; k), it follows that j :
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Aug, (Ts, €p,),, (12)(34);k) = {1 + x1x2 # 0} — Aug, (T2, €p,),; k) is the open embedding,
and i : Aug, (T2, €,),, (13)(24);k) = {1 + x1x2 = 0} = & — Aug, (T2, €,,),: k) is the closed
complement. Hence, (2.3.1]) implies that
H;(Aug, (T, €g,),, (12)(34);:k)) = H:™' (k) = (Q[-1]1 @ Q(-D[-2])"", * < 4;
H(Aug, (T2, €,),, (12)(34); k) = HI(K*) = Q(-2).
Thus,
H (Aug, (T, €, (pr)2; k) = Q[-2] ® Q(-1)[-3] & Q(-2)[-4].

(b). Consider the case (1). Note: Aug,, (T, €,,),:k) = {(x;)), € K’} = k%, and x; + x3 + x1xx3 =
e(aiz) for any € € Augm(T, €)1 > k) So ] : Augm(T, €1) (pR)] ; k) = {)C] + X3 + X1XX3 £ 0} —
Aug, (T, €,,),; k) 1s the open embedding, and i : Aug, (T, €,,),, (Pr)2: k) = {x1 + X3 + X1X2x3 =
0} = Aug,, (T, €,,),; k) is the closed complement. Hence, (2.3.1) implies that

H;'T(Augm(T, €)1 » (PrR)1: k) = H:_l (AUgm(T, €)1 (Pr)2: k)

= (Q[-2]® Q(-D[-3]® Q(-)[-4]D)" ", » < 6;

H{(Aug, (T, €p,),, ()15 k) = HO(Aug, (T, €,,),; k) = Q(=3).
That is,

H (Aug, (T, €,),, (or)15 k) = Q[-3] ® Q(-1)[-4] & Q(-2)[-5] & Q(-3)[-6].
(c). Consider the case (4). As Aug, (T, €,),, (0r)2; k) = kK X k, by Example 2.12] we immedi-
ately have:
H (Aug, (T, €p,),, (or)2; k) = Q(=1)[-3] & Q(-2)[-4].

(d). Finally, consider the case (3). Note: Aug,, (T, €,),; k) = {(x;)}_, € K’} =k, and 1 + xx3
e(afz) for any € € Aug, (7, €p,),;k). So j : Aug, (T, €p,),, (Pr)13 k) = {(x; ,-3:1 € |1 + xx3
0} — Aug, (T, €y,),; k) is the open embedding, and i : Aug, (T, €p,),, (Pr)2; k) = {1 + x2x3
0} = k* x k — Aug, (T, €y,),; k) is the closed complement. Hence, (2.3.1) implies that
H;(Aug, (T, €p,),, (0R)15K)) = H; ™ (Aug, (T, €4,),, (0r)23 k)
= (Q-D[-3]® Q(-2)[-4])"", * < 6;

H{(Aug, (T, €p,),, (0r)15 k) = H (Aug, (T, €,),; k) = Q(=3).

I+

That is,
H:(Aug, (T, €p,),, (pr)1; k) = Q(=D[-4] ® Q(-2)[-5] ® Q(-3)[-6].

Note: Aug,(A;k) = Aug, (T, €, (Er)1;k), so we also have H;(Aug,(A;k)) = Q[-3] &
Q(-D[-4] & Q(-2)[-5] @ Q(=3)[-6]. In particular, the mixed Hodge polynomial is given
by H.(Aug, (A;k); x,v,1) = £ + qt* + ¢*F + ¢*t°, where ¢ = xy. Clearly, B(A) = 2, and
dim = dim Aug,,(A; k) = 3. It follows that,

1 + g%t
(1 +qn)qt
gives the 2-variable invariant generalizing the ruling polynomial (Corollary [3.1T].

P{(g,t) = (t + q*) BW(gr*) ™BN [ (Aug, (A; k); x, v, 1) =
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3. ‘INVARIANCE’ OF AUGMENTATION VARIETIES

In this section, we study the compatible properties of the augmentation varieties for Legen-
drian tangles under a Legendrian isotopy. In the case of Legendrian knots A, the ‘invariance’
of augmentation varieties follows immediately from the invariance of the stable tame isomor-
phism class of the LCH DGA A(A) [ENSO02,HR15]]. This approach may be generalized directly
to show the ‘invariance’ of the full augmentation varieties associated to Lengendrian tangles.
However, we also want the ‘invariance’ of augmentation varieties with fixed boundary condi-
tions, when the situation is more complicated. Here, we will pursue a different approach, i.e. a
tangle approach as in [Sul7], through which we can reduce the problem to a local one, when
the Legendrian tangles in question are simple enough, for example as in Figure [[.2]

3.1. The identification between augmentations and A-form MCSs. We firstly present with
some details the identification between augmentations and A-form MCSs for Legendrian tan-
gles, sketched in [Sul7, Section.5.1]. This is simply a direct generalization of the case for
oriented Legendrian knots in nearly plat positions, given in [HR15, Thm.5.2].

As usual, fix an open interval U C R, and let 7 be a Legendrian tangle front in U X R,
equipped with a Z/2r-valued Maslov potential u, base points #i, ..., *p so that each connected
component containing a right cusp has at least one base point. Let n; and ng be the number
of left and right end-points of T respectively. Fix a base field k and an nonnegative integer m
dividing 2r.

3.1.1. Morse complex sequences. We start by reviewing some basic concepts.

Definition 3.1. A handleslide H, of T is a coefficient r € k, together with a vertical line segment
in U X R, avoiding the crossings and cusps, whose end-points lying on two strands of 7. A
labeled base point c, of T is a base point on 7 away from the crossings and cusps, together with
a coeflicient r € k*. A handleslide H, of T is called m-graded if r = O or its end-points belong
to 2 strands having the same Maslov potential value modulo m. An elementary tangle of T is
the subset (tangle) of 7 within some vertical strip containing a single crossing, a single cusp, a
single handleslide, or a single labeled base point.

Definition 3.2. A (m-graded) Morse Complex Sequence (MCS f] over k of T is a triple C =
({(Ci,dp}, {x1}, H) such that:

(1) H is a collection of m-graded handleslides with coefficients in k and labeled base points
with coefficients in k*; .

(2) {x;} is an increasing sequence of x-coordinates xy < x; < ... < Xy, such that U =
[x0, x3] and the vertical lines x = x; decompose the tangle with handleslides 7 U H into
elementary tangles;

(3) For each [, (C},d)) is a Z/m-graded complex over k such that: C; is the free k-module
generated by ey, ..., e, corresponding to the points of 7 N {x = x;} labeled from top
to bottom, with the grading |e;| = u(i)(modm); The differential d; has degree —1 and is
lower-triangular, i.e. < dje;,e; >= 01if i > j, where < d,e;, e; > denotes the coefflicient
of e; in dje; relative to the basis e, .. ., ey;

SNote: The MCSs here are known as ‘m-graded Morse complex sequences with simple left cusps’ in [HR15].
Also, the usage of different sign conventions leads to a slightly different definition of MCS.



26 TAO SU

(4) For each [, if the strands k and k£ + 1 at x = x; meet at a crossing (resp. left cusp) near

(= rightly before or after) x = x;, then < djey, ey >= 0 (resp. < djey, exs >= (=140,

If they meet at an unmarked right cusp near x = x;, then < dje, ex; >= —(=1y®. If

they meet at the marked right cusp with base-point #; near x = x;, then < djey, e;4; >=

—(=1y®g,, for some invertible element s; € k*. In this case, we say that C assigns the

value s; to the base point ;;

(5) For each 0 < [ < M, the complexes (C},d;) and (C},1, d;;) are related by the following
conditions, depending on the elementary tangle 7, of T between x; and x;,;:

(a) If T) contains a crossing between strands k and k + 1 (labeled from top to bottom),

then there’s an (not necessarily filtered) isomorphism of Z/m-graded complexes

¢ : (Cd) = (Cryi,dir) Vi&ﬁ
e; i+ k, k+1
ple) =1 ew1 =k
ey i=k+1
(b) If T; contains a handleslide with coefficient r between strands j and k, j < k, then
there’s an isomorphism of Z/m-graded filtered complexes ¢ : (C;,d;) = (Ci41,d41)

via
_ €; l?&]
"O(e’)_{ej—rek i=j

(c) If T; contains a right cusp between strands k and k + 1, then there’s a surjective
morphism of Z/m-graded filtered complexes ¢ : (C;,d;) — (Ci1,d;41) with kernel
Span{ey, dje;}, defined by

e; i<k
w(e) = {

eir i>k+1
and ¢(ey) = 0, ¢(dier) = 0. Notice that the quotient (C;, d;)/Span{ey, dje;} is freely
generated by [e;],i # k,k+ 1 as a k-module, according to the defining condition |(4)
(d) If T, contains a left cusp between strands k and k+ 1, then (C},1,d}4) is a direct sum
of (C}, d)) and the acyclic complex (Span{ey, ex11}, dir1ex = tery) for some t € k*
as a Z/m-graded filtered complex, via the morphism ¢ : (C},d;) — (Ciy1, d41):

é; i<k

QO(EI') - { €isn P> k
(e) If T, contains a labeled base point c, with coefficient r € k* on the strand k, then
there’s an isomorphism of Z/m-graded filtered complexes ¢ : (C;,d;) = (Ci41, d41)

via
€; i#+k
()D(ei)_{ reg i=k

Remark 3.3. By definition, m-graded MCSs satisfy a sheaf property similar to that of augmen-
tation varieties for Legendrian tangles.

5Note: Here we have used the same notations {e;} for 2 different bases, one for each of C;, C;1. We will use this
convention throughout the context.
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Similarly as in [HR15]], we have

Lemma 3.4 ( [HR15, Prop.4.2]). A MCS is uniquely determined by its handleslide set H and
initial complex (Cy, d;).

Conversely,

Lemma 3.5 ( [HR15, Prop.4.3]). Given an initial complex (Cy, d,) for T at x = xo, satisfying
the conditions in Definition a m-graded handleslide set H is the handleslide set
of a m-graded MCS with initial complex (Cy,dy) if and only if, when inductively define the
complexes (Cy,d;) from left to right, have < diey, exr1 >= 0, —(=1)*® or —(=1)*®s for some
s € k* whenever x = x; precedes a crossing, a unmarked right cusp or a marked right cusp
between strands k and k + 1 respectively.

3.1.2. A-form MCSs.

Definition 3.6. Given a m-graded MCS C on T, C is called an A-form MC if its handleslide
set is arranged as follows:

(1) There’s a handleslide with coefficient in kK immediately to the left of a m-graded crossing.
The handleslide connects the 2 crossing strands.

(2) There’s a labeled base point with coefficient in k* at each base point (excluding the
marked right cusps) of 7.

(3) If m = 1, there’s a handleslide immediately to the left of a right cusp. The handleslide
connects the 2 strands meeting at the cusp.

Denote by MCSA(T; k) by the set of all m-graded A-form MCSs over k for T, again the sheaf
property is satisfied.

Definition 3.7. Given any two m-graded A-form MCSs C = ({(C;, d)}, {x;},H), and C' =
({(Cr,dD}Axi}, H) on T, an isomorphism between C,C’ is a collection of isomorphisms ¢ =

{¢;}, where ¢, : (C}, d)) > (C1, d}) is an isormorphism of m-graded filtered complexes, such that
they commute with the maps ¢’s in Definition [3.2]

Let T, be the left piece of T, i.e. T, consists of n; parallel strands, equipped with the induced
Maslov potential ;. By Definition/Proposition we have an inclusion of DGAs A(T) —
A(T) with A(T) = Z < a;j,1 < i < j < ng >, where a;; corresponds to the pair of left
end-points i, j of T'.

Theorem 3.8. For any Legendrian tangle front T, there’s a natural isomorphism
O : Aug, (T;k) »> MCSA(T; k)

which commutes with restrictions. The map ® is defined as follows:
Let € be a m-graded augmentation of T over k, by Lemma it suffices to associate to € a
handleslide set H and an initial complex (Cy, dy) :

(1) (Co,dy) : Cy = Span{e;, 1 < i < ny} where e; corresponds to the left end-point i of T,
with grading le;| = u(i)(modm); < doe;, e; >= (—1¥Ve(a;;) for i < j, and 0 otherwise;

T<A> stands for ‘Augmentation’.
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(2) H : For each m-graded crossing q of T, take a handleslide immediately to the left of q
as in Definition with coefficient —€(q), If m = 1, for each right cusp g, also add a
handleslide immediately to the left of q, with coefficient —e(q);

For each base point = (excluding the marked right cusps) with corresponding generator
t in the DGA associated to T, take a labeled base point with coefficient €(t) (resp. €(t)™"!)
if the orientation of the strand containing * is right-moving (resp. left-moving).

Moreover, if q is a right cusp marked with the base point *;, under the identification the value
(see Definition assigned to the base point is €(t;)”9.

Proof of theorem 3.8} Cut the Legendrian tangle 7 into elementary Legendrian tangles: a single
crossing, a single left cusp, a single right cusp, or a single base point excluding the marked
right cusps. Recall that the augmentation variety Aug, (T’; k) (resp. the set of A-form MCSs
MCS“(T; k)) satisfies the sheaf property, so can be written as a fiber product of augmentation
varieties (resp. the sets of A-form MSCs) for elementary Legendrian tangles over those for
trivial Legendrian tangles. Hence, it suffices to show the theorem for the following simple
Legendrian tangles: n parallel strands, a single crossing, a single left cusp, a single right cusp,
and a single base point (excluding the marked right cusps). In these cases, the theorem reduces
to Example[[.20jand Lemma 5.2 in [Sul7]], whose proof can be done by a direct calculation. O

From now on, we will always use the identification between augmentations and A-form
MCSs.

3.1.3. Handleslide moves. Given a trivial Legendrian tangle (7, u) of n paralle strands, a Z/m-
graded handleslide H, with coeflicient r between strands j < k, is also equivalent to an Z/m-
[1.21)

graded filtered elementary transformation H, : C(Ty) = C(Tg) (Definition

Hr(ei) = {

€; l¢]
ej—reg i=]j
Similarly, a labeled base point ¢, with coefficient r € k* on the strand &, is equivalent to an
Z|m-graded filtered elementary transformation c, : C(Ty) >C (TR):
€; i+k
c,(e[) B { rey i=k
Definition 3.9. Let’s also define an Z/m-graded unfiltered elementary transformation H) :
C(Ty) = C(Ty) for j < k:

1 N ei iik
Hr(e’)_{ek—rej i=k

We can represent H, by an upper arrow between strands j, k with coefficient r, termed as un-
filtered handleslide. We will use this notion in the proof of Theorem [3.10{ For example, see
Figure [3.3| (middle) and Figure [3.5|(middle and right).

Also, a single crossing s; between strands k, k + 1 in a MCS is equivalent to a Z/m-graded
(not necessarily filtered) elementary transformation s, : C(T, ) — C(Tg), with T the elementary
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tangle containing the crossing:

e i#kk+1
si(e) =1 e i=k
Cr i=k+1

There’re some identities involving the elementary transformations (represented by handleslides
H, or crossings s; as above) between Z/m-graded complexes. They can be represented by the
local moves (or handleslide moves) of diagrams as in Figure 3.1} Each diagram represents a
composition of elementary transformations with the maps going from left to right, and each
local move represents an identity between 2 different compositions.

SIS IR RN I PO oy I R o B TR B D 2 S Ve [
7] (d) [71 [72 (e) T2] 7] (f) [
[ro~""1r2] |-rire 7] rirel 71 < <1

Ficure 3.1. Local moves of handleslides in a Legendrian tangle 7 = identi-
ties between different compositions of elementary transformations. The moves
shown do not illustrate all the possibilities.

More precisely, the possible local moves in a Legendrian tangle (7, ) are as follows (see
also [HR15, Section.6]):

Type 0: (Introduce or remove a trivial handleslide) Introduce or remove a handleslide with co-
efficient O and endpoints on two strands with the same Maslov potential value modulo
m.

Type 1: (Slide a handleslide past a crossing) Suppose 7 contains one single crossing between
strands k and k + 1, and exactly one handleslide & between strands i < j, with (i, j) #
(k,k + 1). We may slide A (either left or right) past the crossing such that the endpoints
of 4 remain on the same strands of 7'. See Figure [3.1](c),(f) for two such examples.

Type 2: (Interchange the positions of two handleslides) If 7" contains exactly two handleslides
hy, hy between strands i; < j;, and i, < j,, with coefficients r|, r, respectively. If j; # i,
and i; # j,, we may interchange the positions of the handleslides, see Figure[3.1] (b) for
an example; If j; = i, (resp. i1 = j,) and h; is to the left of /,, we may interchange the
positions of Ay, h,, and introduce a new handleslide between strands iy, j, (resp. iz, ji),
with coefficient —ryr, (resp. rir,), see Figure (d) (resp. (e)).

Type 3: (Merge two handleslides) Suppose T contains exactly two handleslides A, h, between
the same two strands, with coefficients ry, r,, respectively. We may merge the two han-
dleslides into one between the same two strands, with coefficient r| + r,, see Figure[3.]]
(a).

Type 4: (Introduce two canceling handleslides) Suppose T contains no crossings, cusps or han-
dleslides. We may introduce two new handleslides between the same two strands, with
coeflicients r, —r, where r € k.
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3.2. Invariance of augmentation varieties up to an affine factor. Let Aug; (T’; k) be the
subvariety of acyclic augmentations of the full augmentation variety Aug, (7;k). That is,
Aug, (T3 k) = U, ,,Aug, (T, pr,pr; k) where p;, pg run over all m-graded normal rulings of
T,, Ty respectively.

Theorem 3.10. Given any 2 Legendrian tangles (T, u), (T’,u") so that each right cusp of T, T’
is marked, and h is a (generic) Legendrian isotopy between them, there’s an isomorphism

@, : Aug® (T; k) x (k) X k¥ = Aug? (T"; k) x (k) x k¥

for some nonnegative integers a,a’,[3,3. Moreover, under the obvious restriction maps, the
isomorphism ®;, commutes with the identity map Id : Aug, (T ; k) — Aug, (T;; k), and is com-
patible with the ruling decomposition over Ty = T}, that is, the following diagram commutes:

Aug? (T; k) x (k*)* x kP O Aug® (T’; k) x (k)% x k¥

Rr()lry l lRT,(-)H[/{

NR7, 1 NR7,

Proof of Theorem Any Legendrian isotopy is a composition of a finite sequence of simple
Legendrian isotopies, such as a smooth isotopy which switches the x-coordinates of two neigh-
boring crossings, or one of the tree types of Legendrian Reidemeister moves. Hence, It suffices
to show the case when /4 is a simple Legendrian isotopy between 7', T".

By cutting the Legendrian tangles 7', T’ into simple pieces, we can assume 7 = X oY o Z
and 77 = X o Y’ o Z are compositions of simpler Legendrian tangles, such that Y, Y’ are the
“minimal” pieces involved in the Legendrian isotopy A.

Let’s firstly prove the theorem for Y, Y’. The nontrivial cases are as follows, the other cases
are either trivial or similar.
If h is a smooth isotopy between Y, Y’, which switches the x-coordinates of two neighboring
crossings a, b, as in Figure [3.2] We may assume Y (resp. Y’) is the Legendrian tangle shown as
in Figure [3.2] (left) (resp. (right)) without the handleslides. Assume a (resp. b) is the crossing
between strands i, i + 1 (resp. j, j+ 1),s0i+ 1 < j. Denote by s,, s, the elementary transforma-
tions represented by the crossings a, b respectively, and by H, (resp. H;) the handleslide with

coeflicient r € k (resp. s € k) to the immediate left of a (resp. b) between the crossing strands
of a (resp. b). Denote Cy = C, = C(Y,) = C(Y)), Cg = C(Yg) = C(Y}) (Definition |1.21]).

Use the identification between augmentations and A-form MCSs, we have isomorphisms
Aug (Y; k) = {(dy, 1, 5)I(C;, d;) is a m-graded filtered acyclic complex,
the handleslides H,, H; are m-graded.}
{(do, 1, 9)ldy € Aug,, (Y13 k), < doe;, eis) >=0=<dpej,ej1 >, H,, H;
are m-graded.}
= Aug, (Y';k)
where (C;,d;) is the complex over the vertical line x = x; (labeled by the dotted line i in

Figure (left)) determined by (dy, r, s) via Lemma That is, (Cy,dy) = s, o H(Co,dy),
(Cgr,dr) = (Cy,d>) = s, 0 H(Cy,d,). Similarly, given (dy, r, s) € Aug, (Y;k) = Aug, (Y';k),

IR



TOWARDS THE COHOMOLOGY OF AUGMENTATION VARIETIES OF LEGENDRIAN TANGLES 31

Ficure 3.2. The move applied to modify MCSs, corresponding to a smooth iso-
topy which switches the x-coordinates of two neighboring crossings. In the fig-
ure, a, b are the crossings, and r, s indicate the coeflicients of the handleslides in
each diagram.

define (C{,d}) := s, o H(Cy, dp), (Cr,dy) = (C}, d}) := s, o H(CY,d}) according to Figure[3.2]
(right). Observe that (s, o H,) o (s, o Hy) = (s, o Hy) o (s, o H,) as shown in Figure [3.2] so
(Ca, do) = (C, d)).

Thus we obtain an isomorphism ®,, : Aug;, (Y; k) > Aug; (Y’; k). Recall that, under the iden-
tification between augmentations and A-form MCSs, the restriction maps r; : Aug, (Y; k) —
Aug, (Y. k) (resp. rg : Aug,(Y;k) — Aug,(Yg;k)) is given by (dp,r,s) — (Co,dp) (resp.
(dy, 1, s) = (C3,d,)), and similarly for Y’. So, clearly the isomorphism ®, commutes with the
identity map Id : Aug,,(Y;; k) - Aug, (Y;; k).

Moreover, as (C,,d>) = (C},d}), the isomorphism @, also commutes with the identity map
wr = 1d : Aug, (Yg; k) > Aug, (Yy; k). The theorem in this case then follows.

If h is a Legendrian Reidemeister type I move between Y, Y’. We may assume Y (resp. Y”) is the
Legendrian tangle as in Figure [3.3] (left) (resp. (right)) without the handleslides. In Figure[3.3]
assume a is the crossing, and c is the marked right cusp, with marked point * corresponding to a
generator 7 in the DGA associated to Y. Denote by s, elementary transformation corresponding
to the crossing a. As always, label the strands over any generic vertical line x = x; from top to
bottom by 1,2, ...,n;. Denote by H,, H, the handleslides with coeflicients r, s € k in Figure|3.3
to the immediate left of a, ¢ respectively, denote by H) the unfiltered handleslide with coefficient
r € k in Figure (middle). Denote C; = Cy = C(Yy) = C(Y)),Cr = C(Yr) = C(Yy)
(Definition . Denote y; = uly,._,, for 0 < i <2, where the vertical line x = x; is labeled by
the dotted line 7 in Figure [3.3] (left).

Under the identification between augmentations and A-form MCSs, we have:
Augl (Y;k) = {(do, r, s)|(C;,d;)is a m-graded filtered acyclic complex,
and the handleslides H,, H; are m-graded.}

where (C;,d;) is the complex over the vertical line x = x; in Figure [3.3] (left) determined by
(dy, 1, s) via Lemma That is, (C1,d,) = (Co,dy) ® Span{ey,diex = (—1y¥1Pey,,} via the
inclusion Cy < Cj as in Definition[3.2](5d), (C,, d,) = 5,0 H.(C}, d}), and (Cg,dg) = (C3,d3) =
010H(Cy, d>), where Q is defined as in Definition[3.2](5¢). Thatis, Q; : (C,d) = H(C,, dp) -
(C5,d3) with Qi(e;) = e; fori < k, Oi(e;) = ¢;_, fori > k+ 1, and QOi(er) = 0 = Oi(dey).
Observe that, < djep.1, e >= 0 1s automatic, and < dsey, €ry1 >=< diey, €rn > —r <
diey, exr1 >= —(—=11®r, so ris the value assigned to the base point * at c. Also, |a| = 0 implies
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*******

Ficure 3.3. The sequence of moves applied to modify MCSs, corresponding
to a Legendrian Reidemeister type I move. In the figure, a is the crossing,
¢ is the marked right cusp, and r € k*,s € k indicate the coefficients of the
corresponding (possibly unfiltered) handleslides. In the last diagram, 1/r in-
dicates the coeflicient of a labeled base point *, and V is a collection of han-
dleslides: for each i < k, there’s a handleslide between strands i, k with coeffi-
cient z; = (=1)?®Or~ls < dye;, ex >, depending on the MCS (dj, , 5).

that H, is automatically m-graded. Hence equivalently, by Lemma 3.5 we have:
Aug; (Y;k)
{(dy, r, $)I(Cy, dp) 1s m-graded filtered and acyclic, H; is m-graded,

IR

< deps1, k2 >=0,< daey, x4 ># 0.}

IR

{(dy, r, $)|(Cy, dy) is m-graded filtered and acyclic, H, is m-graded, r € k*}
Aug® (Y k) x k* x kP

where k¥ > s encodes the possible values of s, with § = 1 (resp. 0 and ¥ = {0}) if m = 1
(resp. m # 1). Thus, we obtain an isomorphism @, : Aug;, (Y; k) S Augy (Y'; k) X k* X k# which
sends (dy, r, ) to (dy, 1, s). Clearly, ®, commutes with the identity map Id : Aug, (Y; k) N
Aug, (Y7 k).

On the other hand, the right restriction maps are rg : Aug, (Y;k) — Aug, (Yr;k) (resp.
Aug; (Y5 k) x k™ X kK — Aug, (Y} k)) given by (do, r, s) = (Cg,dg) = (C3,d3) (resp. (do, 1, s) =
(Cr,dy) = (Co,dp)). Observe that

(Cr,dg) = Qo H,os,0H,((Co,dy)® Spaniey, diex = (-1 Vers1})

= Qco H,o H o 5,(Co,do) ® Spantey, dje, = (=1)"Vey,1})

= Quo H,o H!((Co,dy) ® Span{ey, drex = (1" Veyin})

= QxoH,oH\(C5,d))
as shown in Figure where for i = 1,2, (C/,d}) is the complex over the vertical line x
x; in Figure (middle) determined by (do,r, s), i.e. (C},d}) = (Co,doy) © Span{ey, d}ex
(—=1)1®ey, )} via the inclusion (Co,dy) < (C},d;) as in Definition [3.2] (5d), and (C}, d5)
54(C1,d}) = (Co, do) @ Spanfey, djey = (—1¥1®ey,,}, via the inclusion (Co, dy) < (C}, d}) given
by: e; — e; fori < k; e, — ep11; e; — ey fori > k.

Given (dy, 1, ) € Aug’(Y;k), for each i < k, define z; := (=1y2®r s < dye;, e, > and let
H,(z;) be the handleslide between strands i, k with coefficient z; as in Figure[3.3] (right). Clearly,

IR
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the handleslides H;(z;)’s commute with each other as elementary transformations. Let V be the
collection of handleslides H;(z;)’s. Let ¢, be the elementary transformation corresponding to the
labeled base point with coefficient y = r~! as in Figure (right). Define ¢g := (¢, o V)
Cr S C & depending on (dy, r, s). Notice that if z; # 0, then s # 0, so m = 1 by the condition
(do, 1, 5) € Aug), (Y; k). Therefore, the handleslides H;(z;)’s are all m-graded. It follows that ¢g
is a m-graded filtered isomorphism.

Claim: (Cg, dg) = ;' (Cr, dg)(:= (Cr, @' © d}y © ¢g)).

Proof of claim. Denote Q := Qy o Hyo H! : C}, — Ci. Let (C.,d.) := H, o HI(C},d}) be
the complex over the vertical line immediately to the left of the right cusp ¢ in Figure [3.3]
(middle) (labeled by the dotted line c in the figure). Then Q is the surjective morphism Qy :
(C.,d.) — (Cg,dg) with kernel Span{ey, d.e;} defined as in Deﬁnition(Sc). Denote cp,;] dp =
@z ody o g

Since (C5,d,) = (Co,dp) ® Spanfer, dyey = (—1¥"Pepn), we have: for i > k, dre; =
drQ(ein) = Qdher = doe; = (g - dpess drex = drQesn + reper) = Qdj(€xsr + regst) =
rQdjei. = rdpe; = (901;1 - dp)ex, where we have used djer, = 0; for i < k, notice that
< de;, ey >= 0 =<d’e;, e;4» >, we then have

dre; = drQ(e) = Qdéei
! ’ ’

= Q(Z <dej,e; > et <d,ej, e > ey + Z <dej,ejn > ej)
i<l<k >k

= Qk(Z <dpe;,e; > et < dpej, e > exq + Z < dpe;,ej > ej.r)
i<l<k >k

= Z < dye;, e > e+ < dpe;, e, > Qk(ek+l) + Z < dype;, e;j>e;

i<l<k J>k

To compute Qy(ex+1), notice that
deex = d.HH (e + sexer) = HHdy(e, + sepir)
= HHI((-1Y*Perr + sdyers)
= H(=1Y*®(ers2 — regr) + sdbegsr)
= (=1Y°“esr — recs) + sdsesn
It follows that
et = —(=1Y°Orldee; + 1 epar + (- 120r  sdyers
—(=1)2 O e + 1 e + (=120 g Z < djes1, €42 > €j12
ik

—(=1)2 O g e + 1 ey + (=120 g Z <dpey,e; > €ja
Jj>k

which then implies that Qx(ex1) = r e + (=1)2Or s 3, < doex, e; > e;. As a consequence,
we obtain

(3.2.1) dre; = Z <dyei,e; > e+ < dyei, e > 1 e

i<l<k
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+ Z(< doej, e; > +(=120r s < does, ex >< doey, ej >)e;
Jj>k
= Z <dyei,e; > e+ < dyei,er > r e
i<l<k

+ Z(< doei,ej > +z; < doey, e >)e;

J>k
On the other hand,
-1 -1
(3.2.2) (pr -dp)e)) = ¢g odyogr(e)
-1
= @i odgle; +ziex) = ¢, o V(dye; + zidoey)
= Cy(z < dpe;, e; > (e; — ziep)+ < doe;, ex > ey)
i<l<k
+ cy(2(< doei,ej > +z; < doey, ej >)e;)
J>k
= Z < doe;, e; > (e; — ziyer)+ < doe;, e; > yey
i<I<k
+ Z(< doei,ej > +z; < doex, ej >)e;
Jj>k
= Z < d()ei, e > e+ < d()e,', e > r_lek
i<l<k
+ Z(< doei,ej > +7; < doey, € >)€j
J>k
= dge;

where in the second to the last identity, we’ve used:

Z <dgei,e;>7z = (=10l Z < dye;,e; >< dyey, e, >

i<l<k i<l<k

= (1205 < dsei, e >= 0.
Now we have seen that dre; = (901;1 - dy)e; for all i. This finishes the proof of the claim. O

It follows from the claim that, ¢g : (Cg,dg) N (Cg.dy) is an Z/m-graded filtered iso-
morphism. In particular, (Cg,dg) and (Cg,d}) induce the same m-graded normal ruling of
Yr = Y;. Hence, after passing to the left and right pieces Y, = Y],Yz = Y}, the isomor-
phism @, is compatible with the ruling decomposition. In other words, (¢, o Ry(dy, r, S))lyi =
(Ry o®@y(dy, , 1, 5))ly; and (¢,0Ry(dy, 1, 5))ly, = (Ry 0@y (dp, 1, 5))ly, for all (do, r, s) in Aug,, (Y k).
The theorem in this case follows.

Moreover, notice that any m-graded normal ruling of Y (resp. Y’) is uniquely determined
by its restrictions to Yz, Yz (resp. Y}, Y;), and so is ¢;. It follows that @, in this case is fact
compatible with ¢, : NR” — NR”..

If h is a Legendrian Reidemeister type Il move involving a right cusp between Y, Y’. We may
assume Y (resp. Y”) is the Legendrian tangle as in Figure [3.4] (left) (resp. (right)) without the
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handleslides. In Figure assume a, b are the crossings and c is the right cusp, and denote
by s, s, the corresponding elementary transformations. As always, label the strands over any
generic vertical line x = x; from top to bottom by 1,2,...,n;. Denote by H,, Hy, H, the han-
dleslides with coefficients r, s,t € k in Figure @ (left), and similarly denote by H,, H;, H]
the corresponding handleslides in Figure [3.4] (middle and right). Denote C;, = Cy = C(Y}) =
C(Y.), Cg = C(Yy) = C(Yg) (Definition @) Denote ;. := pily,=y; -

k+1:

j+2|

Ficure 3.4. The sequence of moves applied to modify MCSs, corresponding
to a Legendrian Reidemeister type II move involving a right cusp. Label the
strands over any generic vertical line from top to bottom by 1,2, .. .. In the figure,
a, b are the crossings, c is the right cusp, and r, s, ¢ indicate the corresponding
handleslides with coefficients r, s, t € k respectively.

Under the identification between the augmentations and A-form MCSs, we then have:
Aug; (Y;k) = {(do,r,s,0I(C;,d;)is a m-graded filtered acyclic complex,
and the handelslides H,, H,, H, are m-graded.}

where (C;, d;) is the complex over the vertical line x = x; (labeled by the dotted line i in Figure
(left)) determined by (dy, r, s, ) via Lemma|3.4, That is, (Cy,d;) = s,0 H,(Cy, dp), (C1,d>) =
sp 0 Hy(Cy,dy), and (Cg,dg) = (Cs3,d3) = Qi1 © H(C3,d>), where Oy = Qi1(H; - d>) is the
morphism ¢ in Definition [3.2] (5c). In other words, we have a short exact sequence of Z/m-
graded filtered complexes:

QOk-10H;

(3.2.3) 0 — Span{e,_; + tey, da(er— + ter)} — (Cy,dy) ——— (Cr,dg) — 0

Notice that < dlek,ek+1 >=< doek_1,€k+1 > +4r < d()ek, Crr1 >, < dzek,ekH >=< doek, i1 >
Then equivalently, by Lemma we have:

Aug (Y; k)

{(do, r, 5, D|(Co, dp) 1s m-graded filtered acyclic, H,, H,, H, are m-graded,

< dper-1,er >= 0, < dpex_1, epe1 > +r < dpey, exy1 >= 0, < dpey, er1 >+ 0.}
{(dv, s,1)|(Co, dy) is m-graded filtered acyclic, Hy, H, are m-graded,

< dpey, e >+ 0.}

{(dy, HI(Cy, dy) is m-graded filtered acyclic, H, is m-graded,

< dpe, exr ># 0.) X kP

R

[l

IR
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= Aug?(Y'; k) x kP

where in the second identification we have observed that: < dye;_;, e; >= 0 follows automat-
ically from < djei_1,exs1 >= 0 and < dyey, ex1 ># 0; The condition < dyey—1, €1 > +r <
doey, exy1 >= 0 implies r = — < dyey_1, €1 > | < doex, ex+1 >, which is nonzero only when
ur(k—1) = pp(k+ 1)+ 1(= pr(k))(modm), i.e. |a| = pup(k—1)—pu (k) = O(modm), or equivalently
H, is m-graded. The last identification again follows from Lemma where k# 5 s encodes the
possible values of s, with 8 = 1 (resp. 0 and k# = {0}) if |b| = O(modm) (resp. |b| # O(modm)).

Thus, we obtain an isomorphism @, : Aug;, (Y; k) > Augl (Y5 k) % k# which sends (d, r, s, 1)
to (dy,t,s) with r = — < dyer_1, €01 > | < dpey, ex+1 >. Recall that, under the identification
between augmentations and A-form MCSs, the left restriction maps are r;, : Aug, (Y;k) —
Aug, (Y ; k) (resp. Aug; (Y';k) X ¥ — Aug, (Y;;k)) given by (do,1,s,t) — (Co,dyp) (resp.
(do,t,5) = (Co,d))), and the right restriction maps are rg : Aug, (Y;k) — Aug, (Yr; k) (resp.
Aug® (Y'; k) x k¥ — Aug, (Yr; k) given by (do, 1, 5,1) — (Cg,dg) (resp. (do,t,s) — (Cr,dy)),
where (Cg,dg) = (C3,d3) (resp. (Cg,dy) := QO o H/(Cy,dp)). Clearly, ®, commutes with the
identity map Id : Aug,,(Y;; k) - Aug, (Y;; k).

On the other hand, given (dy, r, 5, 1) € Aug® (Y;k) = Aug® (Y'; k)xkP, sor = — < dyey_1, ex11 >
| < dpey, er1 > and H,, H;, H, are m-graded, observe that

(Cr,dg) = Qr10H,0s,0H0s,0H/(Co,dy)
= Q108,05,0H;oH o H.(Cy,dy)
= Qo Hj o H; o H,(Cy, dp)
as shown in Figure 3.4} where the first move (1) in Figure[3.4]is a sequence of 7Type I Handleslide
moves (Section [3.1.3)) corresponding the second identity above, the second move (2) in Figure
[3.4] corresponds to the last equality above, and can be verified by a direct calculation.
Let (Co,dy) := H; o H,(Cy,dp). Observe that H; o H, is Z/m-graded, filtration preserving,

and preserves the sub-complex Span{e; + tey.1,do(ex + terr1)} of (Co,dpy), we then obtain an
isomorphism of short exact sequences of Z/m-graded filtered complexes:

OroH] ,
0 — Span{e + teg1, doley + tege1)) — (Co, do) —= (Ck, dp) — 0

|
lz iH;OH,- | 901_el

, , QvoHt v
0 — Span{e; + tey, dj(e; + tex 1} —— (Co, d)) = (Cg,dr) —=0

In particular, we obtain an induced isomorphism ¢y : (Cg, dg) > (Cr. dy) of Z/m-graded filtered
complexes, which then induces the same m-graded normal ruling of Yz = Y. Hence, after
passing to the left and right pieces Y; = Y], Yz = Y}, the isomorphism @, is compatible with
the ruling decomposition. The theorem in this case follows.

Moreover, notice that any m-graded normal ruling of Y (resp. Y”) is uniquely determined by
its restrictions to Yz, Yx (resp. Y}, Y}), and so is ¢. It follows that @, is in fact compatible with
¢ - NR” = NR”..

If h is a Legendrian Reidemeister type Il move involving a left cusp between Y, Y’. We may

assume Y (resp. Y”) is the Legendrian tangle as in Figure [3.5] (left) (resp. (right)) without the
handleslides. In Figure[3.5] assume a, b are the crossings, and denote by s,, s;, the corresponding
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elementary transformations. As always, label the strands over any generic vertical line x = x;
from top to bottom by 1,2,...,n,. Denote by H, the handleslide with coefficient r € k in
Figure 3.5/ (left), and similarly denote by H the unfilterd handleslide in Figure [3.5|(second and
third). Denote C, = Co = C(Y) = C(Y;),Cr = C(Yg) = C(Yp) (Definition [I.21). Denote
ML = /vl|YL=Y£a,UR = /J|YR=y;.\,,,U1 = ,U|y|(ml,-

k()

k41
j]i?+2

0 ) 3J+2 g3

Ficure 3.5. The sequence of moves applied to modify MCSs, corresponding to a
Legendrian Reidemeister type Il move involving a left cusp. In the figure, a, b are
the crossings, r indicates the coeflicient of the handleslide (resp. unfiltered han-
dleslides) in the first diagram (resp. the second and third diagrams). In the last
diagram, V is a collection of handleslides: for each i < k, there’s a handleslide
between strands i, k with coefficient —rz;, where z; = (=1*® < dye;, e, >, with
(Co, dp) the initial complex in the MCS.

Notice that, for any augmentation € € Aug, (Y; k), have € o b = (-=1)“*'e(a) = 0, equiva-
lently, the possible handleslide immediately to the left of a is trivial in the corresponding A-form
MCS. Hence, under the identification between augmentations and A-form MCSs, we have:

Augi (Y;k) = {(do, )I(C;,d))is a m-graded filtered acyclic complex,
and the handelslide H, is m-graded.}

where (C;, d;) is the complex over the vertical line x = x; (labeled by the dotted line i in Figure
[3.5](left)) determined by (dy, r) via Lemma[3.4] Thatis, (Cy, d;) = (Co, dp) ®Span{ei 1, dyexr1 =
(—1y1%*De; 5} as in Definition 3.2] (5d), (C2,d2) = 54(C1,d)), and (Cr,dg) = (C3,d3) = 55 0
H,(C», d»). Equivalently, by Lemma[3.5] we have:
Aug (Y; k)
{(dy, N|(Cy, dy) 1s m-graded filtered and acyclic, H, is m-graded.}
Aug® (Y'; k) x kP
where k# > r encodes the possible values of r, with 8 = 1 (resp. 0 and k¥ = {0}) if |b| = O(modim)
(resp. |b| # O(modm)). Thus, we obtain an isomorphism @, : Aug, (Y;k) > Aug? (Y'; k) X kP
which sends (dy, r) to (do, r). Clearly, ®, commutes with the identity map Id : Aug, (Y.;k) >
Aug, (Y;; k).

On the other hand, the right restriction maps are rg : Aug, (Y;k) — Aug, (Yr;k) (resp.
Aug (Y5 k) X k¥ — Aug, (Yp; k)) given by (dy, r) — (Cg, dg) (resp. (Cg, dy)), where (Cg, dg) =
(C3,d3) (resp. (Cr,dyp) := (Co,do) ® Spanfey, drey = (—1¥*®e;, 1} as in Definition (5d)).

IR

IR
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Observe that
(Cr.dp) = sp0 H, 0 5,((Co,do) ® Span{eg,, diers = (=1 *Vey,o))
= H] o530 5,((Co,do) ® Span{eg., diegs1 = (=1 Pegan})
= H[((Co,dy) ® Span{ey, dje = (=1 Vey1})
HI(Cg.dy)
as shown in Figure where (C/,d}) is the complex over x = x; in Figure (third) deter-

mined by (Co, dp), i.e. (C|,d}) = (Co,dp) ® Span{e;,dje; = (=1y*®e, 1} as in Definition
(5d), which can also be identified with (Cg, dp).

For each i < k, let z; := (=1)*® < die;, e >= (=1)*® < dye;, e, > and let Hi(-rz;)
be the handleslide between strands i, k with coefficient —rz; as in Figure [3.5] (right). Clearly,

as elementary transformations, they commute with each other (See Figure (b)). Let V =
V(dy, r) be the collection of handleslides H;(—rz;) shown as in Figure (right), which also

represents an Z/m-graded filtered isomorphism V : Cx — Cx, where we have identified C| with
Ck.

Claim: H!(Cg,d}) = V(Cr, dp).

IR

Proof of claim. In fact, for i > k have < dye;, ex.» >= 0 and dgper.1 = 0, hence (HI ~dp)(e;) =
Hl od, o (H) '(e;) = de; = (V - d}y)(e,); For i < k have (H - d},)(e;) = djye; — 1 < dei, exsa >
w1 = dpe; — rzidye;. On the other hand, have
(V-dp)e) = VodgoV ' (e)=Vody(e ~rzey)
= V(dge; — rzi(=1Y"Pegar)
= die; + Z < dye;, e; > rzer — rzi(— 1 e;

i<l<k
= d.e: — ,(_1)#R(k)
- REi rg; Ck+1

= (HI ) d;e)(ei)

where we have observed that
Z <dpei,e;>ry = (=1)H&® Z < dgpe;, e; >< dpey, e >

i<l<k i<l<k
= (=1 y#®p Z < dge;, e; >< dpey, €0 >

i<l<k+2
= (=1y*Or < dile; €400 >= 0

as < djey, exs2 >= 0 =< djyers1, €4y >. Therefore, H - dj, = V - dj, as desired. O

As a consequence, g = V7! : (Cg,dg) > (Cg.dyg) 1s an Z/m-graded filtered isomorphism.
In particular, (Cg, dg) and (Cg, d},) induce the same m-graded normal ruling of Y = Y;. Hence,
after passing to the left and right pieces Y; = Y, Yz = Y, the isomorphism @, is compatible
with the ruling decomposition. The theorem in this case follows.
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Moreover, notice that any m-graded normal ruling of Y (resp. Y’) is uniquely determined by

its restrictions to Y, Y (resp. Y}, Y}), and so is ¢,. It follows that @), is in fact compatible with
¢n : NR? = NR”.
If h is a Legendrian Reidemeister type III move between Y, Y’. We may assume Y (resp. Y’) is
the Legendrian tangle as in Figure (left) (resp. (right)) without the handleslides. In Figure
@ assume a, b, ¢ are the crossings, and denote by s, 53, 5. (resp. s, s, s..) the corresponding
elementary transformations in Figure [3.6] (first and second diagrams) (resp. (third and fourth
diagrams)). As always, label the strands over any generic vertical line x = x; from top to
bottom by 1,2,...,n,. Denote by H,, H,, H, (resp. H, H}, H,) the handleslides with coeflicients
r,s,t € k (resp. r,s,t' =t —rs € k) in Figure @] (left) (resp. (right)). Denote by H,,, H», H,
(resp. H,3,H,s, Hy3) the handleslides with coefficients 7, s, € k (resp. r,s,t’ =t —1rs € k) in
Figure(second diagram) (resp. (third diagram)). Denote C; = Cy = C(Yy) = C(Y),Cg =
C(Yr) = C(Yy) (Definition - Denote py 1= ply,=y;, Hr := Hlye=vy, H1 = My,

e S A— i
o1 k—1: P o1 k-1
I S

oo

‘ (1) T ) i g
| ! - ! 1 - k‘
k41 ‘ k+1 k—+1¢ el k+1 k-+1jJ7 |
To 1z 3it? To T 7 3it2 ) |

Ficure 3.6. The sequence of Handleslide moves applied to modify MCSs, cor-
responding to a Legendrian Reidemeister type III move. In the figure, a, b, c
are the crossings, r, s,t,t = t — rs indicate the coeflicients of the handleslides
in each diagram. The moves (1), (3) are Handleslide type I moves (Figure
(c),()), and the move (2) is combination of Handleslide type 2 moves, type 3
move (Figure@ (d),(b),(a)), and the standard identity s, o 5. © 5, = 5, 0 5.0 5.

Under the identification between augmentations and A-form MCSs, we have:
Aug) (Y;k) = {(do,r,s,0I(C;,d;)is a m-graded filtered acyclic complex,
and the handleslides H,, H,, H, are m-graded.}

where (C;, d;) is the complex over the vertical line x = x; (labeled by the dotted line i in Figure
[3.6|(left)) determined by (dy, r, s, t) via Lemma[3.4] Thatis, (Cy,d,) = 5,0 H.(Cy, dy), (C2,d>) =
s. o H(C,,d;), and (Cg,dr) = (Cs,d3) = s, o H(C,,d,). Observe that < dje;, ey >=<
doep-1, err1 > +r < doep, ep1 >, and < drep_y, e >=< diej_1, €1 > —t < diej_1, e >=<
doey, exy1 > as < dyer_1, e, >= 0. Also, it’s direct to see that H,, H, H, are all m-graded if and
only if H), H;, Hy, are all m-graded. Then equivalently, by Lemma 3.5 we have:

Aug (Y; k)

{(dy, 1, 5,D|(Cy, dy) 1s m-graded filtered and acyclic, H,, Hy, H, are m-graded,

< doer-1,ex >=0,< dye, 1 >=0,< drey_1, e, >= 0.}

{(do, 1, 5,1)|(Co, dy) is m-graded filtered and acyclic, H,, H,, H,, are m-graded,

IR

[l
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< dpei-1,ex >=0,< dpey, exy1 >= 0, < dpey_1, exr1 >= 0.}
= Aug, (Y';k)
where the last identification follows by symmetry. Thus, we obtain an isomorphism @, :
Augl (Y3 k) > Aug! (Y’'; k) which sends (dy, 1, s,t) to (do, 1, s,t') with ' = t — rs. Clearly,
@, commutes with the identity map Id : Aug, (Y,; k) — Aug, (Y;; k).

On the other hand, the right restriction maps are rg : Aug, (Y;k) — Aug, (Yr;k) (resp.
Aug, (Y';k) — Aug, (Yi;k)) given by (do, 7, 5,1) — (Cg,dg) (tesp. (do,1,5,1") — (Cg,dy)),
where (Cg,dgr) = (C3,d3) (resp. (Cg,dg) = (C},d})). Here (C},d) is the complex over the
vertical line x = x; (labeled by the dotted line i in Figure (right)), determined by (dy, 1, s, 1)
via Lemma That is, (C},d}) = s, o Hy(Co,dp), (C},d}) = s, o H,(C},d}), and (C},d) =
s, o H/(C},d}). Observe that

(CR’ dR)

Sp © HS SE\RS Ht O 8,0 Hr(COa dO)

= 5,08:.058,0H20H;50H.»(Co,dp)

= s,08.08,0H.30H,30H;3(Co,dp)

= s,0H os.oH),os,oH(Cydpy)

= (Cg,dy)
as shown in Figure As a consequence, ¢ = Id : (Cg,dg) . (Cr,dy) 1s an Z/m-graded
filtered isomorphism. In particular, (Cg,dg) and (Cg, dy) induce the same m-graded normal
ruling of Yz = Y.

Hence, we have seen that, after passing to the left and right pieces Y, = Y], Yz = Y;, the
isomorphism @, is compatible with the ruling decomposition. The theorem in this case follows.

Moreover, notice that any m-graded normal ruling of Y (resp. Y’) is uniquely determined by
its restrictions to Yz, Yz (resp. Y7, Y;), and so is ¢, It follows that @, is in fact compatible with
¢n : NR” = NR%.

So far, we have shown the theorem for Y, Y’, hence there’s an isomorphism @, y : Aug; (Y; k)X
(k) x kP = Aug® (Y'; k) x (k*)* x k¥, which commutes with Id : Aug® (Y,; k) — Aug®(Y;;k),
and is compatible with the ruling decomposition over Yz = Y;. In general, T = X o Y o Z, T’ =
X o Y’ o Z are compositions of simpler Legendrian tangles, and 4 is the simple Legendrian iso-
topy between Y, Y’. In particular, Xz = ¥, = Y], Yz = Y, = Z;. We construct an isomorphism
@y, : Aug’ (T; k) x (k*)* x ki = Aug’ (T”; k) x (k*)* x k¥ as follows.

By the sheaf property, we have

Aug; (T k) = Aug, (X; k) Xaug vy XAUg,, (Y5 k) Xauge (vg:k) XAug,, (Z; k)
Augfn(T/; k) = Aug;(X; k) XAug?n(YL;k) XAugfn(Y/; k) ><Augf‘n(Yl’e;k) XAugfn(Z; k)

By the identification between augmentations and A-form MCSs, any element of Aug;, (T'; k)X
(k*)* x k* is of the form (Cy, Cy, 1, s,Cz), where Cx, Cy, Cz is an acyclic m-graded A-form MCS
on X, Y, Z respectively, such that Cx|y, = Cyly,, Cyly, = Czly, as Z/m-graded filtered complexes,
andr € (k")*, s € k5. Also, there’s a similar statement for 7.
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Define (Cy, ', s") := @), y(Cy,r, s). Since ®; y commutes with Id : Aug), (Y; k) > Aug (Y] k),
we have Cxlyi = Cyly, = Cy/lyi. On the other hand, the proof of the theorem for Y, Y’
also gives a canonical Z/m-graded filtered isomorphism ¢z : Czlz, = Cyly, > Cyly,=ve»
with ¢z depending on (Cy,r, s) algebraically. By Definition [3.2} the A-form MCS C; on
Z has the form C; = ({(C}, d))}, {x;}, H), where x is the x-coordinate of the left endpoints
of Z, (Co,dy) = Cyzlz, etc. Then by Lemma below, there’s a canonical extension of
(Co,dj) = Cyfly;? to a m-graded A-form MCS C, = ({(C,d)} {x;}, H) := ®(¢g,Cz), and
¢o = g to a sequence of isomorphisms ¢; =: ¢ = {¢;}, with ¢; : (C}, d)) > (C,d)) an
isomorphism of Z/m-graded filtered complexes. Moreover, C’, and ¢, depend on Cz|z, , ¢ al-
gebraically. As a consequence, (Cx,Cy, 1, s',C,) is an element in Aug?(T”; k) x (k") x k.
define ©,(Cx,Cy,1,5,Cz) := (Cx,Cy, ', s’,C,). We then obtain an algebraic morphism

@y, : Aug’ (T3 k) x (k) x k¥ — Aug® (T"; k) x (k") x k¥
Notice also that, Cz, C’, induce the same m-graded normal ruling of Z.

Conversely, given (Cx,Cy, 1, 5", C?), define (Cy, r, s) := (D,:}Y(Cy/,r_', s") and let (,01;1 : Cyrly;e >
Cyly, be the induced isomorphism in the proof of the theorem for Y, Y’. Then define C; :=
(I)’(gol‘el, C’) as in Lemma By a similar argument as above, we see that (Cx, Cy,7, s,Cz)
defines an element in Aug;, (T'; k) X (k*)* X k. Define @, (Cx,Cy,r,s,C)) ;= (Cx,Cy,r,5,C2).
Then we obtain an algebraic morphism

@, : Aug® (T; k) x (k)7 x k¥ — Aug® (T k) x (k)* x kP
By Lemma 3.14] it’s easy to see that @, @) are inverse to each other.

Thus, we obtain an algebraic isomorphism @, : Aug?(T;k) X (k*)* x k# > Augl (T'; k) X
(k) x k¥. By definition, ®, clearly commutes with Id : Aug) (Tr; k) = Aug (X.; k) N
Augy (T;;k) = Aug, (X;;k), and is compatible with the ruling decomposition over T = Tk.
This finishes the proof of the theorem. O

By a more careful check, the proof of the previous theorem also shows the following:

Corollary 3.11. In the setting of Theorem [3.10} given any m-graded normal rulings py, pr of
T, =T;,Tg = Ty respectively, and any €, € O,(pr; k), there’s an isomorphism:

®; : Aug, (T, e, pr: k) X (KT x kBT = Aug, (7, €, prs k) x (k)P0 x km=5D
where dim = dim Aug, (T, €, pr; k), dim’ = dim Aug, (T’, €., pr; k), and B(T), B(T") are the
numbers of base points on T, T’ respectively.

In particular, the mixed Hodge polynomial of Aug, (T, €,,, pr; C), up to a normalization, defines
a 2-variable Legendrian isotopy invariant generalizing ruling polynomials:

ProL,priq-1) : = HACx,y, ) P*DHL(C; x,y, t) ™BDH (Aug, (T, €,,, pr; C); X, v, 1)
(t + qt*) D (g™ ™D H (Aug, (T, €,,, pr; C); X, y, 1)

where q = xy.
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3.3. An isomorphism lifting property.

Lemma 3.12. Let (T, u) be an elementary Legendrian tangle: a single crossing, a left cusp, n
parallel strands with a single base point, or a marked right cusp. Then there exists a natural
algebraic action B,(T;) ~ Aug,(T;k), which lifts the action B, (Ty) ~ Aug, (TL;k) with
respect to the left restriction map ry : Aug, (T;k) — Aug, (T1;k), and such that the ruling
decomposition Aug, (T k) = Upengr Augh (T'; k) coincides with the stratification of Aug, (T'; k)
induced by B,,(T)-orbits.

Proof. The proof is a case-by-case argument.

Case 1: If T is a single crossing q connecting strands k, k + 1. Use the identification between
augmentations and A-form MCSs (Theorem [3.8), any element C € Aug,, (T'; k) is a m-graded
(acyclic) A-form MCS, which can be written as C = ({(C, d))}_, {x1}7,, H) (Definition [3.2).
Here H consists of a single handleslide H, between strands &,k + 1 immediately before the
crossing ¢, with coefficient r € k (r = 0 in the case when |g| # O(modm)), and (C, d)) is a
Z/m-graded filtered complex over T'|,—,, With C; = C(T|(x=y,), Where xo = x, x, = xg are the
x-coordinates of the left and right endpoints of T respectively, and x; is the x-coordinate of a
vertical line between H, and ¢. In particular, Cy = C(T,), C; = C(Tg) (Definition|[I.21). Denote

HL = ,U|T|(X=_\.L,,,UR = N|T|<X=XR,-

Take any group element ¢, € B,,(T.), we want to construct an action of ¢, on C, i.e. a

m-graded A-form MCS ¢y - C of T, which we denote by C’ = ({(C}, d; 12:0}, {xl}lzzo, H)of T.

Define (Cy, d)) := ¢o(Co,dy) = (Co, o o dy © gba]). Denote by < ¢o(e;), e; > the coefficient of
e;in ¢y(e;). Define a handleslide H,- between strands k, k + 1 immediately to the left of g, with
coeflicient 7/, where
oo S doler), exr1 > +r < Polers1), €xv1 >

. < ¢olex), e > '

Claim: (Cy,d))) and H" := {H,.} defines a m-graded (acyclic) A-form MCS C” on T via Lemma
3.5l

In fact, if |g| = uy (k) — u(k + 1) # O(modm), then r = 0 and < ¢g(ey), exy1 >= 0. It follows
that H] is m-graded. Moreover, notice that ¢, is a m-graded filtered isomorphism and d;, =
do - do, then < djjey, exr1 >=< ¢ ey, ex >< o 0 do(er), exs1 >=< P er, ex >< Poerst, exs1 ><
doey, ex+1 >= 0 as < doey, ex1 >= 0. Hence, by Lemma([3.5] the claim holds.

(3.3.1)

In this case, we can also construct a sequence of isomorphisms ¢ = {¢;} with ¢; : (C}, d)) >
(C;,d}) an isomorphism of Z/m-graded filtered complexes, such that ¢ depends on (C, ¢) alge-
braically.

In fact, define ¢, := Hy o oo H;' and ¢, := s, ¢ = s,0¢1 05", where s, is the elementary
transformation corresponding to the crossing g. We will show that ¢ := {(/),}1220 :C > C
defines an isomorphism of m-graded A-form MCSs (Definition [3.7)). In fact, the only nontrivial
condition to check is that ¢, : C, = C, is filtered. To check this condition, again the only
nontrivial case is < ¢,(ex41), ex >= 0, whose proof is done by a direct calculation:

< ¢r(er+1), ex >=< 5,0 d1(er), ex >=< p1(er), exs1 >

= < Hpopolex + regr), exer >
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< ¢oler), ex >< Hy(ex), exs1 > + < Polex), exr1 >< Hy(err1), €ps1 >
r < @oler+1), €kr1 >< Hy(€pi1), €xs1 >

—1’ < ¢olex), ex > + < Polex), exs1 > +1 < Polers1), €x+1 >
= 0

+

Notice that the calculation above also shows that the m-graded A-form MCS C’ is uniquely
characterized by the conditions that (Cy, d;y) = ¢¢(Co,dp) and ¢ defined above induces an iso-
morphism of m-graded A-form MCSs. It’s then easy to see that the construction of ¢ - C = C’
induces an algebraic action B,(T;) ~ Aug, (T;k), which lifts the obvious action B,,(T) ~~
Aug, (T ; k). Moreover, it also follows from the Z/m-graded filtered isomorphisms ¢,’s that the
B,,(T')-action preserves the ruling decomposition Aug; (T'; k) = L,Augh (T'; k).

Now, it suffices to show that, for any m-graded normal ruling p of 7', B,,(T,) acts transitively
on the stratum Augf,(T’; k). Thatis, forany C = ({(C}, )}y, (xi}7, H), C' = {(Cp, d)Y_o {x1}7_0s H'})
in Augf (T; k), with H = {H,}, H" = {H,/} the handleslides immediately to the left of g, there
exists a ¢po € B, (Tr) such that C' = ¢, - C. For simplicity, denote p;, := plr,. As B,(T) acts
transitively on Aug)’ (T ; k), it suffices to consider the case (Cy, dy) = (Co, d;)) = (Co,d,, ), where
d,, 1s the canonical differential on C(T;) associated to p; (Remark .

Iflgl # O(mod m). Then r = ' = 0. Hence, by Lemma[3.4/have C’ = ¢-C for ¢ = Id € B,,(Ty).
From now on, we may also assume |g| = O(mod m).

If q is a m-graded departure of p. Then again r = ¥ = 0 and ¢, = Id satisfy the desired
requirement.

If q is a m-graded switch of p. Then r,r" # 0. Let a = r’/r and s be the strand paired with k + 1
via p. Clearly, s # k,k + 1. Define ¢y € B,,(T) via ¢o(er+1) = aexs1, do(es) = ae; and ¢o(e,) = e,
forall p € I(Ty) \ {k + 1, s}. We claim that C’ = ¢ - C. In fact, clearly we have ¢, - d,, = d,,,
that is, (Co,d) = ¢o(Co,dp). Moreover, by definition, the coefficient ' of the handleslide in
¢o - C is given by r” = <¢°(€")’ek*<1¢>ozk<)‘i‘;(f"”)’e"”> = ar = r’. Therefore, by Lemma _ we have
¢o - C = C’ as desired. ’

If q is a m-graded return of type (R1) of p (see Figure(bottom row, left)). Thenk € U, , k +
leL,,andp;'(k+1) <k <k+1<py(k)withp,'(k+1) € U,,,pr(k) € L,,. Leta := 1 —r.
Define ¢y € B,,(T1) via &, := ¢o(ex) := ex+ae, and e, := ¢o(e,) := e, otherwise. Thend,, e, =
epu(p for all p € I(Tp). It follows that ¢' - d,, = d,,, or equivalently, (Co,d}) = ¢o(Co, dy).
Moreover, the coefficient of the handleslide in ¢ - C is r/’ = fo(erehei>+r<bo(@us).Cie1 >
As a consequence, by Lemma|[3.4] we have ¢, - C = C’ as desired.

If q is a m-graded return of type (R2) (resp. (R3))of p (see Figure[l.3|(bottom row, middle (resp.
right))). Then k,k +1 € U,, (resp. k,k +1 € L,,). Let i, j be the strands paired with k, k + 1
via p respectively. Then k < k+1 <i < jori < j <k <k+ 1. Leta := v —r. Define
¢o € B, (T) via &, := ¢o(ex) 1= e + aeyi1, € := ¢o(e;) := e; + aej, and &, := ¢y(e,) := ¢, for all
p € I(Ty) \ {k, i}. We claim that ¢ -C = C’. In fact, clearly we have (¢61 -d,, )(e,) = &, for all
p € U,,. Thatis, ¢, ! -d,, = d,,, or equivalently, (Co, d}) = ¢o(Co, dy). Moreover, the coefficient
r” of the handleslide in ¢ - C is r” = ez TblC)en> — 5 4 p = /. As a consequence,

<do(ex).ex>

by Lemma 3.4 we have ¢, - C = C’ as desired.

=a+r=r.

<¢o(ex).ex>
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Case 2: If T is a single left cusp g connecting strands k,k + 1 of Tx. Use the identification
between augmentations and A-form MCSs (Theorem [3.8)), any element C € Aug; (T'; k) can be
written as C = ({(C,, a’l)}}zo, {xl}}zo, H) (Definition . Here H = 0 and (C}, d)) is a Z/m-graded
filtered complex over T'|;,-y,; with C; = C(T |(,=,;), Where xo = x, x; = xg are the x-coordinates
of the left and right endpoints of T" respectively. Denote p; = plzy,_, s Ur = 7).y -

Notice that (Cy,d) = (Co, do) ® Span{ey, ey : die, = (=1)*®e,, |} via Definition[3.2}(5d). It
follows that the left restriction map r;, : Aug), (T'; k) - Aug; (T; k) is an isomorphism. Hence,
the lemma holds trivially.

Moreover, we remark that for any C = ({(C,, dz)}llzo, {xl}}zo, H) in Aug, (T; k) with H = (, and

any ¢o € B,(T.), denote C’ := ¢, - C, which can be written as C’ = ({(C;,dl’)}}zo, {x,}}:O,H’)
with H = (). We can define a Z/m-graded filtered isomorphism ¢; : (Cy,d;) S (Cy,d}) by
bilicodey = Po and D1lspanercpsi:dien=(-1yx®e,,,; = Id. Then ¢ = {do,¢1} : C — C’ defines
an isomorphism of Z/m-graded A-form MCSs (Definition [3.7)), and depends algebraically on
¢, C.
Case 3: If T is n parallel strands with a single base point q on the strand k. Use the identifi-
cation between augmentations and A-form MCSs (Theorem [3.8), any element C € Aug;, (T'; k)
can be written as C = ({(Cy, d))},_,, {x1}_o» H) (Definition[3.2)). Here H = {c,} consists of a single
labeled base point at g (Definition with r € k*, and (C}, d)) 1s a Z/m-graded filtered complex
over Ty wWith C; = C(T|(y=y,)), Where xo = xz,x; = xz are the x-coordinates of the left and
right endpoints of T respectively. Denote py, = pilry,_, - Hr = HlT) ey -

Notice that (Cy,d;) = ¢,(Cy,dp) via Definition [3.2](5e), where ¢, denotes the elementary
transformation corresponding to the labeled base point ¢, at g (see Section |3.1.3)). Thus, there’s
a canonical isomorphism Aug;, (T'; k) > Aug! (T1; k) x k* whose first factor is 7, and the second
factor given by C — r.

Take any group element ¢ € B,,(T), let’s define the action ¢, - C of T, which we denote by
C' = ((Crnd)o) lx}g. H)) Of T

Define (Cy, d}) := ¢o(Co, do) = (Co, ¢ © dy o ¢;"). Denote by < ¢o(e;), e; > the coeflicient of
e; in ¢o(e;). Define a labeled base point ¢, at g, with 7’ given by

r
(3.3.2) ro=—:

< ¢oler), ex >

Clearly, (Cy,d)) and H" := {c.} defines a m-graded (acyclic) A-form MCS C’ on T via
Lemma[3.3]

In this case, we can also construct a sequence of isomorphisms ¢ = {¢;} with ¢; : (C}, d)) >
(C1, d)) an isomorphism of Z/m-graded filtered complexes, such that ¢ depends on (C, ¢) alge-
braically. In fact, define ¢, := ¢, o ¢ o c;'. Then ¢ := {#}2, : C — C’ defines an isomorphism
of m-graded A-form MCSs (Definition [3.7). Moreover, < ¢;(ex), ex >= 1. And, C’ is uniquely
determined by the conditions (Cy, d;)) = ¢o(Co,dp) and < ¢(er), ex >= 1. It then follows that
¢o - C = C’ induces an algebraic action B, (T) ~ Aug, (T'; k), which lifts the obvious action
B, (Ty) ~ Aug, (T; k), and preserves the ruling decomposition Aug; (T'; k) = Li,Aug) (T’; k).

Now, it suffices to show that, for any m-graded normal ruling p of 7, B,,(T) acts transi-
tively on the stratum Aug/,(T;k). That is, for any C = ({(Ci,d)}_o. {x1}_. H), and C' =
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({(C,,dl’)}llzo, {x,}}ZO,H’}) in Augh (T;k), with H = {c,},H" = {c} the labeled base points at
g, there exists a ¢g € B,(T.) such that C' = ¢y - C. In fact, as B,(T,) acts transitively
on Augh'(T; k), it suffices to consider the case (Co,dy) = (Co,d)) = (Co,d,,). Now, let i
be the strand paired with k via p;, and denote a := r/r' € k*. Define ¢o € B,(T.) via
dolex) = aey, Ppole;) = ae; and ¢o(e,) = e, otherwise. Then, clearly ¢, - dy = d, = d,,, and
the coefficient of the labeled base point in ¢ - C is 1’ = L = r’. Thus, by Lemma@,

<¢o(ex),ex>
we have C' = ¢, - C as desired.

Case 4: If T is a marked right cusp q connecting strands k,k + 1 of T;. Then any element
C in Augl(T; k) may be written as C = ({(Ci, d)}7,, {x/}7,, H), where H consists of a single
handleslide H, between strands k, k + 1 immediately before ¢, with coefficient r € k (r = 0
in the case when m # 1). Here xo = x;,x; = xg are the x-coordinates of the left and right
endpoints of T respectively, and x; is the x-coordinate of a vertical line between H, and ¢. In
particular, Cy = C(T;),C, = C(Tg) (Definition @ . Denote py = plry,_, s pr = Hlri,y-
Assume ny,ng = n; — 2 are the numbers of the left and right endpoints of T respectively.

By definition, we know (Cy,d;) = H,(Cy,dy) and (C,, d>) is determined by the short exact
sequence of Z/m-graded filtered complexes:

0 — Span{e;,d e} — (Ci,d) 2, (Ca,dy) > 0
where Qy is the morphism defined as in Definition (5¢). Define H' .= {H,}, with
vom S Bo(er), exr1 > +r < Po(€xs1)s €1 >
< doler), ex >
Then (Cy, d})) and H’ define a m-graded A-form MCS C’" = ({(C;, d)}., {x1}7,, H') via Lemma
Define ¢, : (Cy,d) . (Ci,d}) by ¢ := Hy o ¢ o H:!, which is clearly a Z/m-graded
filtered isomorphism. Similar to Case 1, C’ is uniquely determined by the conditions (Co, dj) =

?0(Co, dp) and < ¢y (ex), ex+1 >= 0. This shows that the construction of ¢,-C induces an algebraic
B, (T)-action on Aug;, (T’; k), which lifts the obvious action B, (T.) ~ Aug;, (Ty; k).

Now, there’re 2 different ways to construct two Z/m-graded filtered isomorphisms ¢, :
(Ca,dy) — (Ca,d5) (resp. ¢ : (Car,dy) — (Ca,d5)), wWith ¢ = ¢r[¢o, C] (resp. ¢, = ¢5[¢o, C)
depends algebraically on ¢, C. Unlike the previous cases, the sequence of isomorphisms
¢ = {¢o, 1, ¢2} (resp. ¢" = {¢o, d1,¢5}) is no longer an isomorphism of m-graded A-form
MCSs. The construction is as follows.

(3.3.3)

~ ~ . ~ <d1€p,ek+1> ~ \np .
Let &, := e, &1 1= die, and é, 1= ¢, — —drerains 6k for p # k,k+ 1. Then {ep}p:1 1S a new

basis for the Z/m-graded filtered k-module C,, and < d,é,, ex,; >= 0 for p # k,k + 1. Clearly,
for j > k+ 1, have é; = e; and d,é; € Span{é,},...1. For i < k, the condition < d,&;, ;.1 >=0
implies that

d,é

Z < dle,-, e > e+ < dlei, ey > €k(l’l’10d Span{ep}p>k+1)
i<l<k

Z < de;,e; > & + z;ex(mod Spanfe,} p5k+1)

i<l<k

for some z; € k. It follows that 0 =< dfé,-, err1 >= 7; < dyey, e >, which then implies
that z; = 0. Hence, d,¢; € Span{é,,p # k,k + 1} fori # k,k + 1. As consequence, we
obtain a direct sum decomposition of Z/m-graded filtered complexes (C;,d;) = (Span{é,, p #
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k.k + 1},dy) ® Span{é,,d\é; = éi+1}. Define an isomorphism ¢ : (Cy,d,) > (Cy,dy) by
Yi1(é,) := &, for p # k,k+ 1, and ¢1(&) := gbl’l(ek),wl(ékﬂ) = ¢1*1 o di(e;). One can check
directly that ¥y od; = d, oY1, so ¢ indeed defines an Z/m-graded filtered isomorphism. Define
$1 1= ¢1 0y : (C1,d)) — (Cy,d}), then $(ex) = & = e;. We thus obtain an isomorphism of
short exact sequences of Z/m-graded filtered complexes:

0
0 — Spanfey, diey} — (Cy,dy) — (Cp,dy) — 0

|
iﬁ l&l | ¢2
v
0 — Spaney, &} e} — (C1,d}) —2~ (Cy,d}) — 0
In particular, we obtain an isomorphism ¢, : (C,, d>) > (Ca,d)) of Z/m-graded filtered com-
plexes, which clearly depends algebraically on ¢, C.

<diep.ex+1>

: : : ~/ ~! .__ ~/ P 7 >l e
Similarly, define a new basis {ep} forC; by ¢, := e, €,,, := d|e, and e, =ep— e, for

<d ey.ers1>
p # k,k + 1. By the same reason, we obtain a direct sum decomposition of Z/ m—gréded filtered
complexes (Cy,d]) = (Span{ép,p # k,k+1},d))®Span{e,,d|é, = &,_,}. Define an isomorphism
vy (C,dy) — (Cy,d)) by :ﬁ’l(é;,) =e, for p # k,k + 1, and y(&) = ¢i(ex), ¥\ (e, ) =
¢1 o dy(er). One can check directly that ¢} o d| = d] o ¢}, so ¢/ indeed defines an Z/m-graded
filtered isomorphism. Define ¢ := (/)™ o ¢ : (C1,d;) — (C1,d;), then @' (e;) = & = e;. We
thus obtain an isomorphism of short exact sequences of Z/m-graded filtered complexes:

Ok
0 — Span{e;, die;} — (C1,dy) —— (Cy,dy) —> 0

|
iz \LJ"] | ¢,

v
0 — Spanfey. djei} — (C1.d}) —%~ (Candy) — 0

In particular, we obtain an isomorphism ¢}, : (C»,d,) > (Cy,d}) of Z/m-graded filtered com-

plexes, which depends algebraically on ¢y, C.

Altogether, we have shown that the B, (7, )-action on Aug, (T; k) preserves the ruling de-
composition. It suffices to show that, B, (7) acts transitively on each stratum. That is, for
any m-graded normal ruling p, and any two elements C = ({(C;,d)}7,, {x)}7, H), and C' =
<y, a’l’)}lzzo, {xl}lzzo, H’)in Aug! (T; k), with H = {H,}, H' = {H,-} the handleslides immediately
to the left of g, there exists a ¢y € B,,(T;) such that C’' = ¢, - C.

In fact, as B,,(T.) acts transitively on Aug/*(T; k), it suffices to consider the case (Cy, dp) =
(Co,dy) = (Co,d,,). Now, leta = ¥’ —r, and define ¢ € B,,(T1) by & := ¢o(ex) := ex +aey, and
é, := ¢ole,) := e, otherwise. Then d,, é, = &, for all p € U,,. It follows that ¢, - d,, = d,,,
or equivalently, (Co, d() = ¢o - (Co, dy). Moreover, the coeflicient of the handleslide in ¢, - C is

! = e iztrboea) e — v Thyg, by Lemma , we have ¢ - C = C’ as desired.

<do(ex).ex>

Remark 3.13. By the constructions of ¢,, ¢}, we have ¢,[¢;', ¢ - C] = (¢2[¢o, C)~' and hence
also ¢[4;', do - C1 = (#5160, C)~".

Now, we have finished the proof of the lemma. O

More generally, we can show the following isomorphism lifting property:



TOWARDS THE COHOMOLOGY OF AUGMENTATION VARIETIES OF LEGENDRIAN TANGLES 47

Lemma 3.14. Let (T, 1) be a Legendrian tangle such that each right cusp is marked. Then there
are two algebraic morphisms ® : B, (T; k) X Aug, (T; k) — Aug, (T;k) and @' : B,,(T; k) X
Aug; (T; k) — Aug;, (T'; k) such that

(1) Given any m-graded A-form MCS C = ({(C;,d)}, {x;}, H) in Aug, (T; k), and any ¢, €
B,(Ty; k), denote O(¢o, C) := ({(Cp, dD}, {xi}, H') (resp. @'(¢o, C) := ((Cr, d)}, {xi}, H)).
Then ¢ : (Co, dp) > (Co, d;) (resp. ¢g : (Co, dp) > (Co, d)) is an isomorphism of Z/m-
graded filtered complexes.

(2) In the situation above, there’s a canonical way to extend ¢ to a sequence of isomor-
phisms ¢ = (¢} (resp. ¢" = {¢}}) with ¢, : (Cp,dy) — (Cp,d)) (resp. ¢, : (Ci,d)) —
(C1,d}")) an isomorphism of Z[m-graded filtered complexes, such that ¢ = @[po,C]
(resp. ¢" = ¢'[po, Cl) depends algebraically on ¢y, C.

(3) (¢, @0, C)) = C, and D(¢;', V' (¢, C)) = C.

(4) ¢jldg", ©(do, O] = (¢ulo, C1)", and $il ", V' (do, CO)] = (¢][¢p0, CD".

Proof. Take any m-graded A-form MCS C = ({(C;,d))}, {x;}, H) in Aug;, (T; k), and any ¢y €
B,.(T.; k). By cutting the Legendrian tangle (7', u) into elementary pieces, notice that we can
construct the A-form MCS ®(¢y, C), D’'(¢o, C), and the sequences of isomorphisms ¢, ¢" induc-
tively. Hence, it suffices to show the lemma for the case when 7 is an elementary Legendrian
tangle: a single crossing, a single left cusp, n parallel strands with a single base point, or a
single marked right cusp.

Now, we only have to repeat the proof of Lemma [3.12} In Case 1, 2, 3, we simply define
D(pp,C) = D' (¢y,C) :=C" = ¢po - C, and ¢ = ¢’ := {¢;}, where C’, ¢, are constructed in each
case as in the proof of Lemma [3.12] The result then follows from Lemma [3.12] In Case 4,
we define ®(¢y,C) = ©'(¢,C) := C' = ¢y - C, and ¢ := {¢o, b1, d2), ¢’ = o, b1, 4]}, where
¢0, $1, ¢, @), are constructed as in Case 4 in the proof of Lemma Now, the result follows
from Lemma and Remark O

Remark 3.15. We see from the proof that if (7, u) is an elementary tangle: a single crossing, a
left cusp, n-parallel strands, or a marked right cusp, then ® = ®’. However, they are not identical
for a general Legendrian tangle (7', ). Because the inductive construction of @, @’ also involves
the sequences of isomorphisms ¢, ¢’ for each elementary piece of 7', whose constructions are
different when the elementary piece is a marked right cusp.

4. THE COMBINATORICS OF THE RULING DECOMPOSITION

Let (7, u) be any Legendrian tangle with base points so that each right cusp is marked. Fix
the base field k = C. Recall that, associated to the ruling decomposition

Aug, (T, pr,pr; k) = UpeNR';z(pL,pR)Augf,,(T, PL,Pr; k)

for the augmentation variety Aug, (T, pr, pr; k), there’s a spectral sequence (Lemma com-
puting the mixed Hodge structure of the variety. This motivates the problem of understanding
the gluing behavior of the pieces in the ruling decomposition. More generally, we will study
the combinatorics of the (full) ruling decomposition (Definition [I.28 Theorem [I.29)):

(4.0.4) Aug, (T k) = UpenrrAugh (T'5 k)
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where Aug) (T;k) := {e € Aug, (T;k) : €|y, is acyclic (Remark[1.24).} is the (full) augmenta-
tion variety of acyclic augmentations.

Similar to Definition[2.1] we define:

Definition 4.1. Given any stratified space X = Ll,csX, and any two indices p’,p € S, we say

o' <% p,if X,, c X,,. We will call the partial order <° so defined the geometric partial order on
S.

It’s expected that the full ruling decomposition is indeed a stratification. That is, the frontier
axiom is satisfied: the closure of any stratum is a disjoint union of strata. We can then pursue
an combinatorial description of the geometric partial order on the full ruling decomposition.

4.1. Trivial Legendrian tangles. We firstly deal with case when T is the trivial Legendrian
tangle of n parallel strands. In this case, the description will be a direct generalization of the
results in [Mel06,Rot09].

By Remark we then have X = Aug, (T;k) = UysX,, where X, = Aug) (T;k) =
O,(p; k), and S = S7 is the set of all m-graded isomorphism types of 7. In this case, X is
a B,,(T)-variety (Definition [1.21)), stratified by finitely many B,,(T)-orbits O, (p; k). Hence,
X = U,X, satisfies the frontier axiom and is indeed a Whitney stratification. Similarly, so is the
ruling decomposition for Aug’ (T'; k).

Now, let’s study the geometric partial order on §. Given any m-graded isomorphism type p
of T, recall that p is a partition / = I(T) = U, U L, U H, and a bijectionp : U, - L, (Definition
[1.23). Equivalently, we can write p as an involution in the symmetry group S, of n letters. That
18, pP = (11]1)(12]2) .. (lk]k) € Sn, if Up = {ll <ph<...< lk} and Lp = {jl,jz, . ,jk}. Finally, it
can also be identified with the canonical differential d, on C(T), given by d,e; = e, fori € U,,
and d,e; =0forie L, UH,.

Definition 4.2. Fix 1 <i < j < n. We introduce some notations:

e Define T; ; to be the trivial Legendrian tangle of the strands i,i + 1,..., jof T.

e For any d in O,,(p; k), that is, (C(T), d) is a Z/m-graded filtered complex whose Baran-
nikov normal form (Lemma is d,, we define a differential d; ; on C(T;;) so that
(C(T;),d; ;) = (Span{e;, [ > i},d)/(Span{e;, [ > j},d) is the sub-quotient of (C(T), d), as
a Z/m-graded filtered complex.

In other words, m; j(d) is represented by the sub-matrix (de,, e,)i<p4<j, consisting of the
rows and columns i,i + 1,..., jof (< de,, e; >)i<pg<n-

e Define p;j := plr,,; to be the m-graded isomorphism type on 7' ; determined by (d,); ;.

e It’s clear that d;; € O,(T;;;k). We then obtain an induced map n;; : O,(p;k) —
O,(pij; k) by m; j(d) := d; ;.

e For simplicity, for each a = 0,1,...,m — 1(mod m), and any subset J of I(T), define
J = {p € Jlle,| = u(p) = a(mod m)}.

Definition 4.3. For any differential d in Aug,,(T'; k), define a rank matrix R(d) := (R, ,(d))1<p.g<n>
where R, ,(d) := (R;’w(ci))a‘1 is a vector given by

R (dy=1" p>q
pgrs e dim Span{r, ,(d)eilp < k < gq,lex] = a(mod m)} p <gq
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That is, Rg,q(d) is the rank of the matrix (< 7, ,(d)ex, ¢ >)k€1a(Tp’q),,€,a4(TM) for p <gq.

Notice also that, by the previous discussion, R, ,(d) is constant on the orbit B, (T) - d =
O,.(p; k), where p is the m-graded isomorphism type determined by d. So for each m-graded
isomorphism type p of T, can define a rank matrix R(p) := (R, 4(0))1<pq<n> DY R(p) := R(d,).
Equivalently, we have

@.1.1) RS (p) = #{p < k < qllex] = a(mod m), k € U,,, p(k) < g}

Convention: For simplicity, for any p € ST and any i < j, the rank matrix of p; ; € ST ; will be
denoted by (Rp,q(pi,j))iSp,qu = (Rp,q(p))isla,qu-

We now define an (algebraic) partial order on S7 as follows:

Definition 4.4. Let p’,p € S be any two m-graded isomorphism types of T, we say p’ <* p
or simply p” < p, if R(p") < R(p), that is R{ (0") < R{ (o) forall 1 <i < j<nanda =

0,1,...,m - 1(mod m). This partial order will be called the algebraic partial order on S7.
Proposition 4.5. For any m-graded isomorphism type p of T, we have
4.1.2) Aug(T; k) = Uyesny<pAugh (T k)

where the closure is taken in Aug, (T;k). That is, o’ <% p if and only if p’ < p. Moreover;
the Zariski closure XP is set-theoretically defined by the conditions R, ,(d) < R, ,(p) for all
1 <p<gqg<ninAug,(T;k) ={dld: C(T) — C(T) is a filtration-preserving differential of
degree —1 of the Z/m-graded k-module C(T)}.

As an immediate consequence, we obtain

Corollary 4.6. The ruling decomposition Aug, (T; k) = upeNRr;Augf;(T; k) is a Whitney strati-
fication, and for any m-graded normal ruling p of T, we have

(4.1.3) Augh(T; k) = Uyenrryr pAugh (T k)

where the closure is taken in Aug, (T'; k).

To show the proposition, we need the following result. If p = (i1j1)... (iji) € S7, define
l(p) := k, and for each 1 < r < k, we say (i, j,) € p.

Lemma 4.7. The algebraic partial order < on S = 87 is generated by the following relations:

(1) Given any p € S containing two 2-cycles (ij), (i'j') (that is, i,i' € U, j,j € L,
and p(i) = j,p(i") = j) such thati < j < i’ < j and p(j) = p@’)(mod m), p;y =
pHG J))j]) defines a new element in S. Then pjy < p.

(2) Given any p € S containing two 2-cycles (ij), (i'j') (that is, i,i’ € U, j,j € L,
and p(i) = j,p(i") = j') such thati < i" < j < jand u(i) = pu@i’)(mod m), p;y =
pG ) jHET ) j) defines a new element in S. Then p;y < p.

(3) Given any p € S containing a 2-cycle (ij) and h € H, such that h < i and u(h) =
p(@)(mod m), pirn 1= p(ij)(hj) defines a new element in S. Then p;;, < p.

(4) Given any p € S containing a 2-cycle (ij) and h € H, such that h > j and u(h) =
u(j)(mod m), p;i 5 := p(ij)(ih) defines a new element in S. Then p;, ; < p.
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(5) Given any p € S containing a 2-cycle (ij), Puj = p(ij) defines a new element in S.
Then py;, < p.

As an immediate consequence, we obtain:

Corollary 4.8. The partial order < on NR7 is generated by the following relations:

(1) Given any p € NRY containing two 2-cycles (ij), (i'j') (that is, i,i € U,, j,j € L,
and p(i) = j,p(i") = j) such thati < j < i < j and p(j) = p@’)(mod m), p;y =
p (A j)i')(jj') defines a new element in NRY. Then p;; < p.

(2) Given any p € NRY containing two 2-cycles (ij), (i'j') (that is, i,i' € U,, j,j € L,
and p(i) = j,p(’) = j') such thati < i" < j < jand p(i) = pu@i’)(mod m), p;y =
pUN j)ij ) j) defines a new element in NR7. Then p;y < p.

Assuming Lemma[4.7] we can show Proposition §.5]

Proof of Proposition.5] One direction is easy. We have seen that fp is a disjoint union of
some X, ’s. Notice also that the conditions R, ,(d) < R,,(p) can be expressed in terms of
the vanishing of certain minors of (< de;, e; >)i<; j<n, SO the conditions hold on X, (which is
automatic) implies that the same conditions also hold on X,,. It follows that, X, C X, implies
R,,(0") < R, (p). In other words, p’ <% p = p’ < p.

On the other hand, suppose p” < p, we want to show X,, C ip. By Lemma it suffices to

consider the case when p’ = p; is a m-graded isomorphism type obtained from p, as in Lemma
4.7@), for some 1 <i < 5.
Case 1: Suppose p’ = p;; is obtained from p as in Lemma (1). That is, p contains two
cycles (i), (i’ j) such that i < j < i’ < j" and u(j) = u(@)(mod m), and p’ = p(ij){@ j)E")(jj),
viewed as an element of §,. Consider the embedding of the affine line d : k — Aug,(T;k),
givenby t —» d; == dy, +tE;; —tE; ;. Here forall 1 < p < g < n, we define E,, to be
the map E,, : C(T) — C(T), with E, ,(¢)) = 0 for [ # p, and E,,(e,) = e,. Recall that
dy : C(T) — C(T) is the canonical differential determined by p’. It’s then easy to see that
(C(T),d,) 1s indeed a Z/m-graded filtered complex, so the map d is well-defined.

Fort =0,dy = dy,. Fort # 0, d, is B,(T)-conjugate to d,. In fact, define ¢, € B,,(T) as
follows: Denote &, = go,‘l(ep) for 1 < p < n, then take &; := ¢;,&; := te; + ey, &y = ey, €y =
—tej, and é, := e, for p # i, j,i’, j’. It follows that d,&; = d, (e;) + te; = e; +te; = &; = &,;),
dlé,'f = dp/(e,v) - tej/ = —tej/ = éjf = Ep([f). Slmllarly, dtép = ép(p) fOI'p S Up - {l, i/}, and d,ép =0
for all the remaining cases. In other words, ¢; - d; = d,, as desired.

As a consequence, d; € X, = B,(T) - d, C )_(p for ¢ # 0. Hence, dy = d,y € )_(p. Since Yp 1S

B,,(T)-invariant, we have X, = B,,(T) - d, C )_(p.
Case 2: Suppose p’ = p;y is obtained from p as in Lemma [4.7(2). That is, p contains two
cycles (i), ('), with i <7 < j < jand p@@) = p@@')(mod m), and p” = p(ij){@ j)(ij )T j),
viewed as an element of §,. Consider the embedding of the affine line d : k — Aug,(T;k),
givenby t — d, :=d, + tEy j. It’s easy to check that d is well-defined.

Fort = 0,dy = dy. Fort # 0, d, is B,(T)-conjugate to d,,. In fact, define ¢, € B,(T)
as follows: Denote &, = ¢;'(e,), then take &; := ¢, — t ey, &; := te; +e¢;,&; :== -1 'e;, and
¢, = e, for p # i, j,j. It follows that d(&;) = dy(e; — t™'er) —e; = —t7'e; = &; = &,0,
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di(é;) = dy(ey) +tejy = &y = é,y). Similarly, d,é, = &, for p € U, — {i,i’}, and d,é, = O for
all the remaining cases. In other words, ¢, - d; = d, as desired.

Now, as in Case 1, a similar argument shows that X, C fp.

Case 3: Suppose p’ = pjp,, is obtained from p as in Lemma[4.7}(3). That is, p contains a cycle
(ij) and h € H,, such that h < i < j and u(h) = u(i)(mod m), and p’ = p(ij)(hj), viewed as
an element of S,. Consider the embedding of the affine line d : k — Aug, (T;k), given by
t = d; :=dy +tE; ;. It’s easy to see that d is well-defined.

Fort =0,dy = dy. Fort # 0, d, is B,(T)-conjugate to d,. In fact, define ¢, € B,,(T) as
follows: Denote ¢, = go;l(ep), then take &, := e, — t 'e;, éj:=tej,and &, := e, forp # h,j. It
follows that d,e, = 0,d,eé; = d,(e;) + te; = &€; = ;. Similarly, d,é, = &, for p € U, — {i}, and
d.e, = 0 for all the remaining cases. In other words, ¢; - d;, = d, as desired.

Now, as in Case 1, a similar argument shows that X, C fp.

Case 4: Suppose p’ = pj ;, is obtained from p as in Lemma.7/(4). That is, p contains a cycle
(ij)and h € H,, such thati < j < h and u(j) = u(h)(mod m), and p’ = p(ij)(ih), viewed as
an element of S,. Consider the embedding of the affine line d : k — Aug, (T;k), given by
t = d; :=d,y + tE; ;. It’s easy to see that d is well-defined.

Fort =0,dy = dy,. Fort # 0, d, is B,(T)-conjugate to d,. In fact, define ¢, € B,,(T) as
follows: Denote &, = ¢, '(e,), then take &; := te; + ¢;, and &, := ¢, for p # j. It follows that
die; = dy(e;) +tej = €; = é,;. Similarly, d,é, = &, for p € U, — {i}, and d,é, = O for all the
remaining cases. In other words, ¢, - d; = d,, as desired.

Now, as in Case 1, a similar argument shows that X,, C Yp.

Case 5: Suppose p’ = p;; i is obtained from p as in Lemma (5). That is, p contains a cycle
(ij) and p’ = p(ij), viewed as an element of §,. Consider the embedding of the affine line
d:k— Aug,(T;k), givenby t — d, :=d, +tE; ;. It’s easy to see that d is well-defined.
Fort =0,dy = dy. Fort # 0, d, is clearly B,,(T)-conjugate to d,. Thus, as in Case 1, a
similar argument shows that X,, C )_(p.
This finishes the proof of Proposition 4.5}
O

It suffices to show Lemma For that purpose, we need some preparation. To modify
the techniques in [Rot09] to our cases, we give another equivalent description of the algebraic
partial order in Definition 4.4

Fix the trivial Legendrian tangle (T, ) of n parallel strands. As usual, label the strands from
top to bottom by 1,2,...,n.
Definition 4.9. A m-graded word (of length n) associated to 7T is a sequence of n letters W =
wi...w,, withw; € {0,1,...,n}, such that u(w;) = u(i) + 1(mod m) if w; # 0. Denote by W,,(T)
the set of all m-graded words associated to T'.

Given a m-graded word W = wy ... w,, define the [i, j] sub-word to be the word w; ... w;.

Remark 4.10. Any m-graded isomorphism type p of T can be identified with a m-graded word
W, =wi...w,of T, viaw,; := p~!(j) for j € L, and w; := 0 otherwise. We will always use this
identification.
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Conversely, a m-graded word W is a m-graded isomorphism type if and only if: W has no
repeated nonzero letter, and w; = i > 0 implies that i < j and w; = 0.

Moreover, for any m-graded isomorphism type p, the rank matrix can alternatively be expressed
in terms of the corresponding word W, = w; ... w,. Thatis, forall 1 < p < g < n have

(4.1.4) R, (o) = #{p<k<qglw > p,pu(wy) = a(mod m)}
#({1 <k < qlwe 2 p}*™)
where we have used the notation in Definition 4.2} and the fact that w;, < k forall 1 < k < n.

Definition 4.11. Given 2 m-graded words V =v,...v,and W =w;...w,of T, wesay V < W
or W covers V, if for each 1 < [ < n, there exists a m-graded permutation o; of {1,2, ..., [} (that
is, u(o(k)) = pu(k)(mod m) for 1 < k < [), such that vy < wy, ) forall 1 <i < [. In this case, we
say the set {vy,...,v;} is covered by the set {w,...,w;} such that w, ) covers vi. We call the
sequence oy, ..., 0, that demonstrates V < W a covering sequence.

By definition, the set W,,(T) is then equipped with a partial order.

Claim: For any 2 m-graded isomorphism types p’, p of T, we have p’ <* p if and only if W,
covers W,,.

/

Proof of Claim. If W, = w;...w, covers W, = w|...w,, and 0,...,0, is a covering se-

quence. In particular, wy < k,v; < k, and w; < w,  forall 1 < k < g < n. Then by Remark
4.10] foreacha =0,1,...,m—1(modm) and 1 < p < g < n, have

R, (p) = #({1 <k<gqlw > p}"")
= #({l <k < glwe, 2 p)
> #({1 <k <qlw; > p}*h
= R}, (0)
Hence, p’ <4 p.

Conversely, if p’ <4 p, by the same formula as above, for each fixed a = 0,1,...,m —
1(mod m), we see that #{1 < k < glw; > p}* <#1 <k < glw 2 p}foralll < p < g < n
Clearly, we can take m-graded permutations 7, T; of {1,...,q} such that w, i < wy; (resp.
w, 0 S w, (j)), whenever i < jand u(i) = u(j)(mod m). It suffices to show that w’, ) S Wrp)

q q q
foralll <p<g<n,aso,:=7140 (‘r;)‘1 will then form a covering sequence.

In fact, assume {k|]l < k < q}* = {k; < kr... < k;}. Forany 1 < i < [, say W’Té,(k,-) =p

for some 0 < p < n, we need to show w, Wr, k- The case p = 0 is trivial, so we can
q

<
(ki) —
assume 1 < p < n. Then R;’,f;fl(p’) =#1 <t < llw,’q > p} > 1—-i+ 1. It follows that

Rel(p) =#{1 <t <lw, > p} = 1—i+ 1, hence wr )2 p = W/T:](ki). o

Suppose V = vi...v,, W = wy...w, are two m-graded words with no repeated nonzero
letters of T, such that V < W. There’s a standard covering sequence that demonstrates V < W.
The construction is defined in terms of a collection of subsets {A?, BY, C¢} of I(T') associated to
V,W,forO<i<nanda=0,1,...,m— 1(mod m):
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Definition 4.12. Define Aj = Bj = C{ := 0. B! := ({v,v2,...,v;} = {0}). Define A{,C¢
inductively, such that ({wy,...,w;} = {0} = A? LU C{ and |A{| = |BY|:

If B = B} ,i.e. v; = 0 or u(v;) # a(mod m), then A{ := A? | and C{ := (C{, U {w;} — {O})“.

Otherwise, Bf = B¢ | U {v;}, i.e. v; # 0 and u(v;) = a(mod m), so u(w;) = a(mod m) if w; # 0.
Denote m{ := max(C{, U {w;} —{0}), then A? := A? | U {m?}, and C{ := C{, U {w;} — {0} — {m{}.

Note: m! exists. Otherwise, w; = 0 and C? | = 0, it follows that |({vy,...,v;} —{0})‘| = |B![ >
IBL | = 1AL = (wi, .. cowid = 0D = [(weays - - 5w} — (0D, where 7; is a m-graded
permutation of {1,2,...,7} such that vy < wy forall 1 < k < i, coming from a covering

sequence showing V < W. This is a contradiction.

As a direct generalization of [Rot09, Lem.4], we have:

Lemma 4.13. Let V < W be 2 m-graded words with no repeated nonzero letters of T, and let
A?, B¢, C? be the subsets associated to V,W as in Definition Suppose |A?| = |B!| = j°.
Then for all 1 < k < j° the k-th largest letter of A? is no less than the k-th largest letter of
B{. In particular, the sets A?, B!, C{ induce a covering showing V. < W, with the k-th largest
letter of A¢ covers the largest k-th letter of BY, the letters of C! and the remaining zeroes of
{wi,...,w;} cover zeroes of {vy,...,v;}.

Proof. The proof is similar to that in [Rot09, Lem.4]. Clearly, the second statement follows
from the first. We show the first statement by induction on i. The case i = 0 is trivial. Assume
the statement for i — 1, to show the result for i. Suppose that the elements of A , B}  are
ay > ay > ... > aj_and by > by > ... > bu_; respectively, so by induction, have a; > b;
forall 1 <1< j*—-1. If B! = B! |, then A? = A? |, the induction procedure is immediate.
Now, suppose that a*, b* are the new letters added to A? |, B! | to obtain A{, B! respectively,
then ay > a* > aiyy for some 0 < k < j* — 1. Recall that a* = max(C{, U {w;} — {0}), so
a, > a, > ... > a > a* are the k + 1 largest elements in ({wy,...,w;} —{0)*. AsV < W, by
definition we have v, < w;, for all 1 <t < i, for some m-graded permutation 7; of {1,2,...,}.
It follows that a; > a, > ... > a; > a” must cover (means “>") the k + 1 largest elements in
({vi,...,vi} ={0}H* = BY. Now, the remaining j* — k — 1 elements a;,; > ... > aj_; of A? cover
the j* — k — 1 smallest elements by, > ... > bj_; of BY |, which clearly cover the j* — k — 1
smallest elements of B, as B?l C B?. As a consequence, A? covers BY. O

Corollary 4.14. Suppose V. = v;...v, < W = wy...w, are two m-graded words with no
repeated nonzero letters of T, such that |({w;, ..., w;} ={0)| > |({vi, ..., v;} ={0})?|. Then there
exists a nonzero letter wy with i < k < j, such that wy. € C5. In fact, wy € C, for all k <m < j,
hence, there’s a covering of the set {vi,...,v,} by the set {wy,...,w,} such that w; covers a
zero.

Proof. By definition, IC? \CLL L = 10w oo wit = {OD] = |({vi, ..., vi} = {0D?] > 0. So there
exists some wy € C;? \ C{ ,. However, notice that Ci \ C}, C ({w;} —{0})* forall 1 <[ < n,
SO C;? \C, C ({wi,...,w;} = {0)?. It follows that i < k < j and wy # 0. This shows the first
statement. For the second statement, clearly wy € C}_,, so there exists some [/ with k < [ < j,
such that w;, € C%, ..., Cj.‘ butwy ¢ Ci',. But Cf\Cy | C {w;}—{0}, it follows that w; = w;, hence
k=1 thatisw, € C%,..., Cj?. Now, the second statement follows from the previous lemma. O
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Finally, we’re able to show Lemma 4.7

Proof of Lemma Clearly, for each of the five cases in the lemma, the corresponding partial
order relation holds. It suffices to show that the algebraic partial order on S7' is generated by
the five relations. That is, given p € S7., for any p’ € 87 such that p” < p, then p” < p;, where p;
is some m-graded isomorphism type in 87, constructed from p via one of the five cases in the
lemma.

Denote by W, = wy...w,, W, = w/|...w, the m-graded words of T corresponding to p, o’
respectively.
Case 1: IfU["j * U;’,. Notice that, U, = ({wi,...,w,} — {0})* and UZ, = ({wi,...,w,} = {0Hh"
Moreover, W,, < W, implies that IUZ/I < |U;‘|. It follows that U, is not a subset of US,. Let
J = w; be the smallest element of Uy such that, for some covering sequence showing W, < W,
J always covers letters strictly less than itself.

Note: Any letter w € U — U7, must cover letters strictly less than itself (if w covers some w’,
thenw =0, orw’ € U/‘j, and w’ <w, hencew <wasw ¢ U /“),). In particular, j is well-defined.

Now, for any / < j such that [ = 0 or u(l) = a = pu(j)(mod m), let Z' = z! ...Z, be the m-
graded word defined by z; = I < j = w; and z}, = w), for p # i. In general, Z' is not a m-graded
isomorphism type, but only an element in W,,(T'). By definition, we have Z' < W, and Z* < Z
in W,,(T) for any k < [ < jsuch that k = 0 or u(k) = u(l) = a(mod m).

Define s to be the maximal letter in U7, U {0} such that s < j. Then by definition of j = w;,
we have W, < Z°. Now, define k to be the smallest letter in {p|0 < p < j}* U {0}, such that
W, < 7k < W, in W, (T). Clearly, k < s < j, and by definition, this is equivalent to the
following

Property: There’s some covering sequence showing W,, < W, such that j = w; covers no letter
> k; And for every covering sequence, j must cover a letter > k at some point.

Case 1.1: Ifk = 0 or k € H,. Then, Z* defines a m-graded isomorphism type of T, with
Zk = P OF Pjrk» as in Lemma 4.7)(5) or (3). It follows that W, < Z* < W, or equivalently,
o' < ZF < p, which shows Lemma Similarly, for any k < ¢ < j such that u(c) = a(mod m),

if ¢ € Hj, then Z° defines a m-graded isomorphism type of 7', with Z° = p;;. as in Lemma
4.7.(3), and W,, < Z° < W,,, we’re done.

From now on, we may assume k > 0 and H N {k,...,j—1}=0. Thenk € Ug U LS.

Case 1.2: Ifk € U;. So k = w,, < jfor some m € Lz‘l. It follows that k € U, otherwise there
exists some covering sequence showing W, < W, such that k = w,, always covers letters less
than itself, contradicting the fact that j is the minimal letter in U; with this property.

If m < i. By the definition of k (see Property), there’s some covering sequence oy,...,0,
showing W, < W,, such that j = w; always covers letters < k. Moreover, for some [ > i,
{wi,...,wi} covers {w|,...,wj} via oy such that j = w; covers a letter k. Asm < i,k = w,
covers some a < kin {w},...,w;} via ;. But k appears at most once in W, a < k. Now,

modify o7 so that k = w,, covers k and j = w; covers a < k, we then obtain a new covering
sequence. Repeat this procedure, in the end we obtain a covering sequence where j = w; only
covers letters < k, contradicting the definition of k (see Property).
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Hence, i < m. Define a m-graded word Z = z;...2,, by z; =k = w,, 2, = j=w;and z, = w),
for p # i,m. Clearly, Z defines a m-graded isomorphism type Z = py ; as in Lemma[4.7,(2), so
Z < W,. Also, Z" < Zsince 7, = w, = z, for p # i,m, and 2} = k = z;, 2}, = Wy = k < j = 2.
Hence, W, < Zk<Z7Z < W,, which implies that p’ < Z < p, as desired.

Case 1.3: If k € L). If k € Ly as well. Then the word W,, does not contain the letter k. By
the definition of k (Property), there’s a covering sequence showing W, < W,, such that j = w;
covers letters < k, hence letters < k. This contradicts the definition of k (Property). Thus, we
must have k ¢ Ly, equivalently, w; = 0.

Consider the [k, j— 1] sub-words of W,, W,,. Recall that, we may assume that Hg Nik,...,j—
1} =0. Foranyk <c < j-1,ifc € U;’, then ¢ € Ug,. Otherwise, ¢ < jand ¢ € U;’ - U;’,
contradicts the definition of j, as in any covering sequence showing W,, < W,, the letter c in W,
must cover letters less than itself in W,,. Therefore, forany k < ¢ < j—1,if ¢ € L, (equivalently,
w, # 0 and p(c) = a(mod m)), then ¢ ¢ U7, which implies that ¢ € L7 (equivalently, w, # 0)
by the previous assumption. Notice also that w; # 0,u(k) = a(mod m) but w, = 0. As a
consequence, [({wg, . .., w1 }—{0H** '] > |({w), ..., w;_l}—{O})““I. Since k € L¢, the word Z* has
no repeated nonzero letters, and by definition of Z*, |({z}, . .. ,z’}‘._l} — 0D = [(fwes - - oy Wi} —
OH*+ > |(w, ..., Wi} = {0})**1]. Notice also that W, < Z*. Thus, by Corollary there
exists a nonzero letter zf = w; in Z* withk </ < j—1, such that z} € C;?jll. Here C;ffll is a subset
of I(T) associated to W,, < Z* as in Definition

Define a new m-graded word Z* = z] ...z, from 7k, via z; = Z]; forp #1,j,and z; = ZI;-(:
w; =0),2; = zé‘ = w;. By construction of Z*, it follows from Corollary m and W, < Z*
that W, < Z* < 7k < W,. Now, we construct a new m-graded word Z = z; ...z, from W,,
viaz, = w,forp # I ji,andz = 0 = wj,z; = w,z; = [ < j = w;. Clearly, z, > z;’; for
all1 < p <n,soW, <Z" < Z. Notice also that Z defines a m-graded isomorphism type via
Z = pyj, as in Lemma[.7/(1). Hence, p’ < p;; < p, as desired.

Apply Case 1 repeatedly, we can assume from now on Uy = Uj, for all a = 0,...,m —
1(mod m).
Case 2: IfL; + LZ,. Notice that |L{] = |Ug“| = |U/“),+1| = |Lz,|, so there exists some i € Lz, - L.
Then i ¢ U;, = Ug. Thus, i € Hy. It follows that w; # 0 and w; = 0. As Wy < W, we have
[Awrs - Wi = {OD™ ! = [(wi, - oo wid ={OD = (W), . Wi = {OD™ ] = [(w], ... Wi =
{0)**!| + 1. So by Corollary there exists some nonzero letter w; € C**! with 1 </ <i-1.
Here Cf_*ll is a subset of I(T') associated to W, < W,,, as in Definition Now, define a new
m-graded word Z = z; ...z, from W,, viaz, = w, for p # [,i, and z; = 0 = w;, z; = w;. In other
words, Z defines a m-graded isomorphism type Z = p;;;, as in Lemma {.7,(4). In particular,

Z < W,. Moreover, by construction of Z, it follows from Corollary and W, < W, that
W, <Z < W,, as desired.

Case 3: Apply Cases 1 and 2, we can now assume Uy = Uy, and Ly = L7, foralla =0,...,m—
1(mod m). It follows also that Hy = H;’,. In this case, the lemma follows from Claim 1 below.

O

Claim 1: Given p’ < p in the set SF of m-graded isomorphism types on T, such that U, =
Uy, Ly = L,, then p’ < p;, for some p; constructed from p via Lemma @.7,(1)-(4).
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To show Claim 1, we need:
Claim 2: If p’, p € S7 satisfy that p’ < p and R; ,(0") < Ry ,(p) — 1,, then p’ < ps = Py for
some 2-cycle (ij) contained in p such that u(i) = a(mod m). Here 1, is the vector with only one
nonzero entry, which is 1 at the a-th slot, for some a =0, 1,...,m — 1(mod m).

Proof of Claim 2. We prove Claim 2 by induction on n = dimC(7T), which is the number of
strands in 7. The claim is trivial if dimC(T) = 2. Assume the claim holds for the case
dimC(T) = n — 1, and consider the case dimC(T") = n.
1. Ifn¢ L, Ly (resp. 1 ¢ U,,U,). By symmetry, it suffices to consider the case n ¢ L,, L,
that iS n < H H then Rln l(p’ln 1) Rln(p,) < Rln(p) - 1 = Rln l(pln 1) 1 and
,ol 1 < Pia-1in S’" By induction, there’s a 2-cycle (ij) € p; -1 such thatpl w1 < (O 1)(11),
and u(i) = a(mod m) Then p’ < ps5 = pgj- In fact, for g < n, have R, ,(0") = R, ,(0},_)) <
R, (P10 1)0])) R, 4(p;; )) It follows that Rp,n(p') =R, ,-1(0") <R, -1(p) = R, ,(0).
2.Ifn¢ Lyandn € L, (resp. 1 ¢ Uy, and 1 € U,). Again, by symmetry, it suffices to consider
the casen ¢ L,y,n € L,. Then n € H,, and p contains a 2-cycle of the form (kn) for some k < n.
Let b := u(k)(mod m).
2.1. If b = a(mod m). Then u(k) = a(mod m). Moreover, p’ < ps := p, . In fact, for g < n, have
Rpg(0ny) = Rpg(0) = Ry 4(0"); it follows that Ry, ,,(0,)) = Rpn-1(04,)) Z Rpu-1(0") = Ryu(p”)
asné¢ Ly.
22, If b # a(mod m). Then Ry, 1(01p-1) = Rip-1(0) = Rip1(0’) = Ripa(oy, ), and
Rln 1010-1) = Riu(0)—1p 2 R ()4 10— 1y = Rip1 (0], )+ 14— 1, implies that R, (01.,-1) =
a1, + 1. Hence, Ry -1 (07, ) < Rip-1(P1a-1) — loand pf | < p1,-1inS7 . By in-
ductlon P11 contains a 2-cycle (ij) such that - (P l)u ) and u(i) = a(mod m) Then
p < ps = Py In fact, for g < n, have R, ,(0") = R, ,(0] ,n—l) <R, (01 0- 1)(”)) p,q(/’(,,)) It
follows that R, ,(0") = R n-1(0") < Ry n-1(p; i) < Rpapg )
3.IfneLyandl € Uy, and (1n) € p’. Let b := u(1) = u(n) + 1(mod m). By the convention
in Definition , recall that the rank matrix of p,, (resp. pé,n) is denoted by (R, ;(02.1))2<p.q<n
(resp. (Rp,q(p/z’n))ZSp,an) Then Ry,(p5,) = Roa(p’) = Rin(0) — 1, < Riup) — 1, -1, <
Ry, (p) — 1, = Ry,(02.) — 1, and p2n < pan In S . By induction, p,, contains a 2-cycle (i)
such that pzn < (P2.))) and u(i) = a(mod m). Then o < ps = Pij- In fact, for p > 1, have
Rpq0ip) = Rpq((020)5)) 2 Rpg(p3,) = Rpg(p); for g < n, have Riy(pp) = Rog((02)) =
Rz»q(pé,n) = Rl,‘](p,); Rl,n(p(_ij)) = Rl,n(p) - la 2 Rl,n(p’)-
4. Ifne Ly and 1 € Uy, and (1n) ¢ p’. Let b := p(n) + 1(mod m).
4.1. Ifa # b(mod m). Then Ry,-1(p], ) = Rip-1(0") = Rin(0) = 1 < Riu(p) — 1o — 1) <
Rin1(p10-1) — 1o, and pf | < P11 10 S7 . By induction, p; ,_; contains a 2-cycle (i) such
that p’l,n_l 11— 1)(11) and u(i) = a(mod m) Then p’ < ps5 = PG . In fact, for g < n, have
Ry g(0) = Ry (0 ,1) < Rpg((Pr11-1)3j) = Rpg(py;); 1t follows that for x # b(mod m), have
R:,(0) = RE, (p) < R, (0, < RE,(00,): Ro.(0) < RE(0) = R, (pp,) as i) = a #
b(mod m).
4.2. If a = b(mod m) and n ¢ L,. Then Ry ,-1(0},_)) = Ri,-1(0") = Rix(0") — 14 < Riu(p) —
lo =Ri1(P1p1) — 2+ 1,, and p’l,n_] < Pip-1 10 S’#I_H. We can apply the inductive hypothesis
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twice. Hence, by induction, p;,-; contains two distinct 2-cycles (ij), (i’j') such that p’],n_1 <
((Pl,n—l)(_,-j))&j/) < (pl,n—l)(_[j) and u(i) = pu(i") = a(mod m). Say i < i’, then p’ < ps := PG In
fact, for g < n, have Rp,q(p,) = Rp,q(pll,n_l) < Rp,q(((pl,n—l)(_ij))(_i/jr)) = Rp,q((p(_ij))(_i/j/)) < Rp,q(péj));
It follows that Ry, ,,(p") < Rpn1(0) + 1o < Rpu1((0gj) i) + la = Rpui(py;) if p < 05 If
p > >ihave R, ,(0") < Rpu(p) = Rya(p(;;)-
4.3. If a = b(mod m) and n € L,. Then Ry ,-1(0},,_;) = Rin1(0") = Rix(0") = 1a < Ri () = 2
1, =Ry -1(010-1) — 14, and p],,z_] < Plp-1 1IN S?IJH. By induction, p; ,-; contains a 2-cycle (ij)
such that p;,n_ < (an_])&j) and u(i) = a(mod m). Then p’ < p5 := Pl In fact, for g < n, have
R, ,(0") = Ry (P} ,-1) < Rp,q((pl,n_l)(‘l.j)) = Rp,q(p(?j)); It follows that R, ,(0") < R, ,—1(p") + 1, <
Rpu1(03,) + Lu = Ryu(0).

This finishes the proof of Claim 2. O

Now, we can prove Claim 1.

Proof of Claim 1. We prove the claim by induction on n = dimC(T'). The first nontrivial case is
n =4, whenp’ = (13)(24) < p = (12)(34) or p’ = (13)(24) < p = (14)(23). In the first situation,
we have p’ = p; := p,3, where p, 3 is defined as in Lemma (1); In the second situation, we
have p’ = p, := p; 2, where p;, is defined as in Lemma (2). Hence the claim holds. Assume
the Lemma holds for dimC(T) = n — 1. Consider the case dimC(T") = n.

1.Ifn ¢ L,. Then n € H,, H,, we can identify p, o’ with py -1, 0] ,_; via the inclusion §,_; —
S, of symmetry groups. Now, we have, Upfm_l = Upl,n—l’Lp?’n_| =L, and ,o’l,n_1 < Pra-1 10
S7,. - By induction, pj, | < (p},_,); for some 1 <7 < 4 and some (p],_,); constructed from
P1a-1 Via case (I) in Lemma It follows that p” < p;, where p; is identified with (p;,-;); via
the inclusion S,,_; <> S, hence is constructed from p via Lemma[4.7,(i).

2. If (kn) € p and (kn) & p’ for some k < n. Let a = u(k) = u(n) + 1(mod m). Since
Up = Uy,L, = Ly, we have k € Uj. Thenk ¢ U, and k € U, . It follows that
Riv1 01031 1) = Rir1i-1(0") = Rin1(0") — 1o < Rip-1(0) = 1o = Riwi n-1(0ks1,0-1) — Lo, and
o et < Priln-1 in S’;’MH_]. By Claim 1, pj,1,,-1 contains a 2-cycle (ij) such that p; ilng S
(Pk+1,n—1)(_,-j) and u(i) = a(mod m). As (kn), (ij) € p,k < i < j < nand u(k) = u(i) = a(mod m),
P2 1= pi; 1s well-defined as in Lemma[.7/(2). Then p’ < p, = py;. In fact, for p > k + 1 and
g <n-—1, have Rp,q(p/) = Rp,q(p;cﬂ,n_l) < Rp,q((pk+l,n—1)aj)) = Rp,q(paj)) = Rp,q(pk,i); forp <k
org =n,have R, ,(0') < R, ,(p) = R, ;(0r)-
3. If (kn) € p,p’ for some k < n. Take T to be the trivial Legendrian tangle obtained from T
by removing strands k, n. Then the restrictions of p’, p on T define two m-graded isomorphism
types on T, denoted by p’, p respectively. Clearly, p’ < p in S%,and Uy = Uy, L; = Ly. By
induction, p’ < p; < p for some 1 < i < 4 and some p; constructed from p, as in Lemma4.7}(i)
for T. Notice that, the construction of p; doesn’t involve the strands k,n of T, so the same
procedure constructs a m-graded isomorphism type p; of T from p, as in Lemma [{.7}(i) for T.
In other words, via the natural embedding of symmetry groups S (I(T)) — SU(T)) = S,, we
have p; = p;(kn). Similarly, p = p(kn), p" = p’(kn). It follows that p’ < p; < p, as desired.

O
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4.2. Elementary Legendrian tangles. By almost the same strategy, we then deal with the
case when T is an elementary Legendrian tangle: a single crossing, a single left cusp, a single
marked right cusp, or n-parallel strands with a single base point. For simplicity, for any m-
graded normal ruling p of T', we denote p;, := plr,, Pr = Plr,-

Lemma 4.15. Let (T, u) be an elementary Legendrian tangle: a single crossing, a left cusp, n
parallel strands with a single base point, or a marked right cusp. Then the ruling decomposi-
tion Aug, (T; k) = UpenrrAugh (T'; k) is a Whitney stratification, and for any m-graded normal
ruling p of T, we have:

(4.2.1) Augh (T k) = Uyenrrp, <prp<pnAugin (T5 K)

where the closure is taken in Aug®(T; k). That is, for any p,p’ € NRY, o’ <% p if and only if
P; < PL PR < Pr-

Proof. Recall that, by Lemma|3.12] the ruling decomposition is the same as the stratification by
B,,(Ty; k)-orbits. In particular, it’s indeed a Whitney stratification.

Now, let’s describe the geometric partial order of this ruling stratification. Clearly, if p’ <© p,
then p} < pr,ps < pg. It suffices to show the converse, i.e. if p; < p;,pf < pr. We use the
notations in the proof of Lemma|[3.12] and prove the result case by case.

If T is a single crossing q connecting strands k, k+ 1. Recall that any element C in Augm(T k) 1s
of the form C = ({(C}, d;) o X }12 o H = {H,}) as in Case 1 of the proof of Lemma 2| Here
H, is the single handleshe 1mmed1ately to the left of g such that » = 0 if |g| # O(mod m). More-
over, (Cy, dy), (Cy,dy) = H.(Cy,dy), (Cs,dr) = 5,(Cy,d,) are all Z/m-graded filtered complexes,

equivalently, < doey, ex+1 >= 0 by Lemma[3.5]

If |g| # O(mod m). Then r;, : Aug, (T;k) > Aug; (Ty; k) is an isomorphism preserving the
Ruling stratification. Thus, p’ <% p follows from Corollary From now on, we may assume
lgl = O(mod m).

Consider the restrictions r;, : Aug;, (T; k) — Aug;, (T1; k) and rg : Aug;, (T; k) — Aug (Tk; k).
Recall that r,.(C) = (Co, dp), rr(C) = (C2,d,), for all C in Aug;, (T; k). By Case 1 in the proof of
Lemma [3.12] r;, rg preserve the Ruling stratifications. We thus obtain two decompositions
(4.2.2) Aug’(T; k) = Uy r; (Aug?(T1; k) = L, rg' (Aug?(Tg; k))
where pg (resp. p») runs over all pg € NR7, (resp. p, € NR7 ) such that p, (resp. p,) doesn’t
pair the strands k, k + 1, 1.e. (kk + 1) & po (resp. (kk + 1) € p»).

Observe that, any element C in rLl(Aug”O(TL, k)) is represented by (Cy, dy), H, such that dj €
Aug(T,; k) (Note: this automatically implies that < dyey, ex+1 >= 0). Hence, rLl(AugPO(T 1. k) =
Aug(Ty; k) x k via the map C — ((Co, dp), r). Also, Aug (T; k) = {(Co, dy) € Aug;, (T1; k)| <
doey, exy1 >= 0} X k via the same map. It follows that

(4.2.3) r (AU (T1; k) = Ugyepory (Augy(T1; k)

Similarly, any element C in r,;l(Augf;f(TR;k)) can be represented by (C»,d,), H, such that
d, € Augh’(Ty; k). Because the condition automatically gives < de, €x,; >= 0, which then
implies that (Cy, d,) := sq‘l(Cz, dy), (Co,dy) := Hr‘l(Cl, dy) are Z/m-graded filtered complexes.
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Hence, rgl(Augfnz(TR; k)) = Augh?(Tg; k) X k via the map C — ((Ca,d>), r). Also, Aug;, (T'; k) =
{(Ca, dy) € Aug,, (Tg; k)| < drex, exr1 >= 0} X k via the same map. It follows that

(4.2.4) re' (AUg(T53K)) = Uy 1! (Augy (T )

In particular, the above two decompositions are stratifications.

Now, we come back to prove p° < p, given p} < pr,p, < pr. If q is a m-graded return,
then r;'(Augl (Ty; k) = Augh(T; k). If q is a switch, then r;'(Augh*(T1; k) = Augh(T;k) U
Aug’ (T; k), where p is the unique m-graded normal ruling of T such that, pl;, = p; and q is
a m-graded departure. Then Aug’ (T’; k) is open dense in ril (Aug’*(Tr;k)). In both cases, we
have

Augh (T3 k) = r; (Augh (T3 k)
Uy <p 7 (Aug? (T3 6)) D i (Aught(Tp k) O Aughy (T k)

That is, p’ <¢ p. It suffices to consider the case when g is a m-graded departure of p. Then we
have rI‘Ql(Augfjf(TR; k)) = Augh (T’; k). It follows that

Augh (T k) = ry' (Augt®(Tg; k))
= Uy etk (Augi(Tr: 6)) O rg' (Augy¥ (Tr; k) > Augly (T k)
Again, we have p’ <% p.
If T is a left cusp q connecting strands k, k+1 of T,. Then clearly r; : Aug, (T; k) > Aug (Ty; k)
is an isomorphism preserving the Ruling stratifications. Hence, by Corollary 4.6} p; < py
implies p; <% p;, which is identical to p’ <% p.
If T is n parallel strands with a single base point q on the strand k. Use the notations in
Case 3 in the proof of Lemma [3.12} then Aug, (T;k) = Aug, (T1;k) X k* via the map C =
{(Crd)} oo () H = {cr)) = ((Co,dp), 7). Also, Augh(T;k) = Augh“(Ty; k) x k* for all
p € NR7, via the same map. Thus, under this identification, p; < p; implies that
Aug) (T; k) = Augh (T k) X k*

S5 AugH(T; k) x k' = Augll (T k)

That is, o’ <% p.

If T is a right cusp g connecting strands k,k + 1 of Tg. Use the notations in Case 4 in the proof
of Lemma[3.12] then

Aug®(T; k) = {(Co,do) € Augl(T; k)| < doey, exe1 >= 0} X kP

via the map C = ({(C}, dD}7,, {xi}7y, H = {H,}) = ((Co, dp), r), where B = 0 (resp. 1) if m # 0
(resp. m = 0). Notice that for any p € NRY, g, pairs the strands k,k + 1, i.e. (kk+ 1) € p;.
It follows that any (Cy, dy) € Augff(TL; k) automatically satisfies < dyey, ex+1 >. Therefore, via
the same map as above, we have the identification

Aug? (T; k) = Augl“(Ty; k) x kP
for all p € NR7. Now, under this identification, p; < p; implies that

Aug’ (T; k) = Aug?"(Ty; k) x kP
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S AugH(TL; k) X K = Augtl(T; k)
That is, o’ <% p.
O

4.3. A conjecture for the general case. Now, we consider the general case. As in Section
[1.4.4] suppose T = E; o E; o...0 E, is a composition of n elementary Legendrian tangles. For
simplicity, denote L; := (E;11), for 0 < i < n—-1and L, := (E,)g. Letr; : Aug, (T;k) —

Aug; (L;; k) be the obvious restriction map, for 0 < i < n. For any m-graded normal ruling p of
T, denote ri(p) := pl;, for 0 < i < n.

Similar to Definition we define an algebraic partial order on the set NR’} of m-graded
normal rulings of T

Definition 4.16. Given any p,p’ € NR’, we say p’ <% p (or p’ < p) if ri(0’) <* ri(p) (Definition
d.4) for0<i<n.

Notice that by Corollary 4.6, this definition is compatible with Definition 2.1} in the sense
that (NR%:, <4) restricts to (NR7 (o1, pr), <*) in Definition

Conjecture 4.17. The full ruling decomposition Aug, (T; k) = Uyenrr Augy, (T k) is a Whitney
stratification. Moreover, given any two m-graded normal rulings p’, p for T, p’ <° p if and only
ifthe p’ < p, that is:

4.3.1) Augh (T k) = Upenrrr<spAugl (T3 k)

where the closure is taken in Aug, (T'; k).

This would give an combinatorial description of the geometric partial order on the ruling
decomposition in the general case.

Remark 4.18. By the previous two subsections, the conjecture holds for the ‘building blocks’
of Legendrian tangles: the trivial and elementary Legendrian tangles.
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